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Abstract

Centrality measures are ubiquitous, appearing in models of opinion formation, macroeco-
nomics, and consumption with externalities. With few exceptions, most of the previous lit-
erature has focused on modeling centrality in settings where the underlying network struc-
ture is known and remains static. This paper expands on this work by considering arbitrary
row-stochastic random networks that may be evolving over time. Under mild assumptions,
we show that all centrality measures are, with high probability, close to their values in an
appropriately-defined “average” network. We conclude by demonstrating how this result of-
fers a major technical simplification for the dynamic and stochastic analyses of several appli-
cations.

1 Introduction

Centrality is a fundamental concept in network analysis that captures not only the number of

connections a particular entity has, but also the significance of these connections (see Jackson

(2010)). An entity that forms connections with more central entities becomes more central her-

self. Many applications leverage network centrality for predictive power and decision making in

a diverse range of domains: Ahern (2012) shows that centrality in intersectoral trade networks

can be used as a predictor for stock performance; Golub and Jackson (2010) show that in models

of naive learning in social networks, the influence of an agent on the consensus belief is directly

linked to her eigenvector centrality in the normalized network; Candogan et al. (2012) show that

optimal product pricing in a network with externalities should depend on agents’ Bonacich cen-

trality (Bonacich (1987)), and similarly, Acemoglu et al. (2015) show that the extent of contagion

in the financial sector due to a liquidity shock at a certain bank is again closely related to the

Bonacich centrality of that bank in the normalized financial network.

Contribution The vast majority of work on centrality assumes that the network structure is

known and fixed. However, network data is noisy and networks are rarely static configurations:
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people break ties and form new relationships over time, institutions dissolve partnerships and

enter into new ones, etc. The question then is how to capture centrality in these dynamic and

stochastic environments. We study a centrality measure based on the normalized adjacency

matrix of the graph, which we call row-stochastic centrality. This measure covers a wide array of

applications, including all the ones mentioned in the previous paragraph. Our main contribu-

tion is a result that shows that under mild regularity conditions, the centrality measures in these

stochastic networks are with high probability close to their values in an appropriately-defined

average network. This provides a methodological tool that, as we show in Section 4, greatly sim-

plifies the study and analyses of these stochastic networks.

Related Literature While the literature mentioned earlier focuses on static and deterministic

networks, there is some recent work on centrality in random networks. Using the graph-limit

concept of graphons (see Parise and Ozdaglar (2019) for a primer), Avella-Medina et al. (2020)

provide concentration inequalities for many common centrality measures, such as eigenvector

and Katz-Bonacich centrality. For discrete graphs, Dasaratha (2017) shows that these centrality

measures converge to their expected values with high probability. Our work complements these

papers by considering a different centrality measure that captures a wide range of applications

(e.g. all the aforementioned applications) for which the above results do not apply. This is be-

cause these applications use the normalized adjacency matrix instead of the adjacency matrix

itself, which means that while the matrix is now row-stochastic, it is no longer symmetric. This

breakage of symmetry presents additional technical challenges beyond the proof techniques

used in these papers.

1.1 Deterministic Network Model

We now introduce our centrality measure and provide some simple examples where this type of

centrality arises endogenously as a key measure of interest.

We consider an unweighted, undirected network G∗ on n nodes with symmetric adjacency

matrix A∗ with elements a∗ij . The corresponding weighted, directed network G is formed by

normalizing A∗i by agent i’s degree to form a row-stochastic adjacency matrix A with elements

aij . Precisely, di =
∑n

j=1 a
∗
ij and aij = a∗ij/di.

Every node i in the network has a type γi ∈ [0, 1], and a propensity θi ∈ [0, 1] corresponding

to how “anchored” she is to her type. The row-stochastic centrality Ci of agent i is a solution to
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the fixed-point problem:

Ci = θiγi + (1− θi)
n∑
j=1

aijCj (1)

It can be easily shown that if G∗ is connected and θi > 0 for some agent i, the centralities have a

unique solution, with the closed-form representation Ci =
∑∞

k=0 Ak
θ(θ � γ) where:1

Aθ =


1− θ1 0 · · · 0

0 1− θ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1− θn

A

While A is a row-stochastic matrix, Aθ is a row-substochastic and irreducible matrix, so the

above sum always exists. As mentioned, this measure captures many applications. For example:

Opinion Formation. Consider a model of opinion formation where agents are either “stubborn”

or “normal” and agent i holds opinion πi,t ∈ [0, 1] over discrete time t, as in Yildiz et al. (2013).

If an agent is stubborn, she always holds an opinion that is either πi,t = 1 or πi,t = 0, which

is given exogenously and unchanged after t = 0. If the agent is normal, she begins with some

initial opinion πi,0 and updates this opinion by linearly combining the opinions of her neighbors

N(i) ⊂ {1, . . . , n}:

πi,t+1 =
1

|N(i)|
∑
j∈N(i)

πj,t

The goal is to understand the limiting opinion of agents as a function of network structure and

agent types. This problem can be reduced to our normalized centrality measure where we assign

γi = πi,0 and let θi = 1 for stubborn agents (i.e. they are completely anchored to their type) and

θi = 0 otherwise. The centrality measure then captures exactly the opinion of agent i as t→∞.

Contagion and Input-Output Economies. Consider an economy consisting of n different sec-

tors with Cobb-Douglas production functions (see Burres (1985)). Sector i has an exogenous

demand Di > 0 for its products, but sectors may also require other sectors’ outputs as inputs to

their own production. We can write down Pi, the production of sector i as:

Pi = Di +

n∑
j=1

ωijPj

for some shares {ωij}i,j , where ωij denotes the fraction of sector i’s output that sector j uses. In

a similar vein to Acemoglu et al. (2011), we assume that
∑n

j=1 ωij < 1, so that there are (at most)

1See Mostagir et al. (2019) for a proof.
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constant returns to scale.

This model provides a framework for the interconnections of the economy and the corre-

sponding effects on output. A shock to the demand (or productivity) at sector i (so thatD′i < Di)

affects not only the production of that sector but potentially also the production of some sector

j. This indirect impact is a result of spillover contagion, and can be measured precisely through

agent j’s centrality (and its change after the demand shock at i).

When the input-output network has every sector contributing equally to those it supplies,

we can cast the output of sector i in the form of our centrality measure. Let us first normalize

the equation by constant D̄ = maxi(1−
∑

j ωij)
−1Di:

Pi
D̄

=
Di

D̄
+

n∑
j=1

ωij
Pj
D̄

Then setting θi = 1 −
∑

j ωij , γi = (1 −
∑

j ωij)
−1Di/D̄, and aij = (

∑
j ωij)

−1ωij , we obtain the

reduction.

Consumption with Externalities. Let us consider the model of Candogan et al. (2012), whereby

agents’ utilities from consumption depend on other agents’ consumption decisions. In particu-

lar:

ui = αixi − bix2i + xi ·
n∑
j=1

gijxj − pixi

where αi, bi are constants, pi is the price for agent i, and gij terms capture the externalities from

agent j on agent i. For a given set of prices p, the equilibrium consumption is given recursively

by:

xi =
αi − pi

2bi
+

1

2bi

n∑
j=1

gijxj

By Assumption 1 in Candogan et al. (2012), we have that
∑n

j=1 gij < 2bi, so in particular letting

θi = 1−
∑n

j=1 gij/2bi, we see that θi ∈ (0, 1). Finally, setting aij =
gij

2bi(1−θi) and γi = αi−pi
2biθi

,2 we get

the reduction to our centrality measure in Equation (1).

2Note that γi > 0 when αi > pi (marginal utility at zero consumption exceeds price). On the other hand, it may
be possible that γi > 1; simply note that dividing by a sufficiently large constant c on each side, we can always recast
the problem with γi ∈ [0, 1] using xi/c instead of xi.
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2 Random Network Model

We start by defining some notation for a random network model on n agents. This random

network is specified by a matrix ρ of link probabilities, where:

ρ =


ρ11 ρ12 . . . ρ1n

ρ21 ρ22 . . . ρ2n

. . . . . . . . . . . .

ρn1 ρn2 . . . ρnn


with the probability that agent i is linked to agent j equal to ρij . We let a∗ij ∈ {0, 1} denote

whether a link from i to j is realized. Takeχ to be any sequence of realized links (a∗i1j1 , a
∗
i2j2

, · · · , a∗ikjk),

and moreover let χ−ij denote the set of χ where both a∗ij and a∗ji do not appear. For additional

simplification, we impose:

Assumption 1. For every i, j, the conditional probability of link formation satisfiesP[a∗ij = 1|χ] =

ρij and P[a∗ij = a∗ji] = 1, for all χ ∈ χ−ij .

In other words, (i) the probability of a link i1 � j1 forming does not depend on whether

i2 � j2 forms, unless i1 = i2 and j1 = j2, and (ii) the link i → j exists if and only if j → i also

exists (and hence we write i � j). This defines an unweighted, undirected network G∗ whose

adjacency matrix is symmetric.

We consider two (weighted) network objects: (i) the realized network G̃, and (ii) the “average”

network Ḡ. In the realized network G̃, we have weights given by:

ãij =

(1− θi)/di, if a∗ij = 1

0, otherwise

where di =
∑n

j=1 a
∗
ij is the realized degree of agent i. If di = 0, then we set ãii = 1− θi and ãij = 0

for all i 6= j. On the other hand, in the expected network Ḡ, expected weights are given by:

āij = (1− θi)ρij/d̄i

where d̄i =
∑n

j=1 ρij , which is expected degree of agent i.3 As before, if d̄i = 0, then we set

āii = 1− θi and āij = 0 for all i 6= j. Note that here that the corresponding matrices Ã and Ā are

in the row-substochastic representation instead of the row-stochastic representation.

3Note that āij is not technically the expectation of ãij for finite n, but these two expressions are shown to be
consistent as n→∞.
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Dynamic Networks. Consider a stochastic sequence of realized networks G̃(t) defined on n

agents over discrete time t = 1, 2, . . .. Let F (t) be the filtration F (t) = σ(G̃(τ)|τ < t) and ρ(t)

be the random network distribution at time t with respect to the filtration F ≡ {F (t)}nt=1. Then,

provided that ρ(t) satisfies Assumption 1 with probability 1 for all t, our random network analysis

applies identically to the case of dynamic networks.

Main Result. Without loss, let us focus on the case of a random (but static) network. Consider

a sequence of growing societies Sn each with n agents. The main connection we develop in this

section is between a growing sequence of random networks G̃n and the corresponding “average”

networks given by Ḡn. Agent i in society Sn has weight θ(n)i ∈ (0, 1),4 and for simplicity, we write

θ(n) as the vector of θ’s when the population is of size n. We also have the expected degree matrix

D̄n given by:

D̄n =


∑n

j=1 ρ1j 0 · · · 0

0
∑n

j=1 ρ2j · · · 0

· · · · · · · · · · · ·
0 0 · · ·

∑n
j=1 ρnj


Finally, we make the following assumption:

Assumption 2. Consider the sequence of vectors θ ≡ {θ(n)}∞n=1 along with the expected degree

matrix D̄n and the link probability matrix ρn. Then (i) mini θ
(n)
i > 0 for all n; and (ii) Laplacian

matrix, D̄n − ρn, has its second-smallest eigenvalue bounded away from 0.

The first condition requires that some agent incorporates their type directly into their cen-

trality. The second condition requires the Laplacian matrix of the realized network not have

multiple zero eigenvalues, as this would imply the network is not connected. Together, these

conditions ensure the centrality measure is well-defined.

Each society Sn comes with its own random network generation process given by:

ρn =


ρ11(n) ρ12(n) . . . ρ1n(n)

ρ21(n) ρ22(n) . . . ρ2n(n)

. . . . . . . . . . . .

ρn1(n) ρn2(n) . . . ρnn(n)


We present the main result of our paper, which includes two regularity conditions similar to

those in Dasaratha (2017). Our first condition requires that agents’ degrees grow at a sufficiently

4We remark that under some condition, this does not automatically rule out applications where θ can be equal to
0 or 1, as we discuss after Definition 2 and in Footnote 6.
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fast rate. This is important because in very sparse networks, individual realizations of links have

a significant effect on centrality. For example, when the expected degree is bounded above as

n → ∞, then any individual link represents a non-vanishing contribution toward an agent’s

centrality.

Definition 1 (Expected Degrees). We say that random network generationρn satisfies the expected-

degrees condition if limn→∞mini∈Sn d̄
(n)
i / log n =∞.

In other words, the expected degrees condition requires that as the society Sn grows, all

agents in the society have expected degrees which are uniformly growing with log n, regardless

of the time of their birth.5 Note that this is a stronger condition than just requiring every agent

in the network to have an expected degree that grows strictly faster than log n. The difference

between the two conditions may be subtle, but without the stronger condition, there is a signifi-

cant chance that the realized network has row-stochastic centralities bounded away from those

of the average network, even as the population size grows large. For the interested reader, this

difference is illustrated in Example 1.

Secondly, recall from Equation (1) that agents split their centrality by assigning weights to

their type and the types of their neighbors. The next definition states that society needs to

be somewhat homogeneous, in the sense that agents have a “similar enough” distribution of

weights:

Definition 2 (Normal Society). We say that θ satisfies the normal society condition if there exists

a constant ν <∞ such that for all agents i, j:

lim sup
n→∞

θ
(n)
i

θ
(n)
j

≤ ν

As a special case, the “normal society” condition is always satisfied when all agents have

the exact same θ. Interested readers can refer to Example 2 to see how, in the absence of the

normal society condition, two networks that occur with equal probabilities can have different

properties as n → ∞. It is easy to see that the normal society condition may also be relaxed

so that it applies only to agents with γi > 0 (so, for instance, the stubborn opinion formation

dynamics in Section 1 can still leverage Theorem 1 despite having θ = 0 or 1).

Under the above regularity conditions, we get the following reduction to deterministic net-

work analysis:

5Formally, Definition 1 can be replaced with the “uniformity requirement” that ∃βn such that d(n)
i ≥ βn logn for

all i ≤ n with limn→∞ βn =∞.
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Theorem 1. Suppose Assumptions 1 and 2 hold, the sequence of ρn satisfies the expected-degree

condition, and θ is a normal society. Then, the centrality vector C̃(n) in random network G̃n is

with high probability close to its centrality vector C̄(n) in the average network Gn. In other words,

for all ε > 0,

lim
n→∞

P
[∣∣∣∣∣∣C̃(n) − C̄(n)

∣∣∣∣∣∣
∞
> ε
]

= 0

Proof. Let us denote by Ēn the “expected” (normalized) adjacency matrix, Ēn = E[ρ̃n]E[D̃n]−1,

and the “mean” influence network, Ān = O
(n)
θ Ēn, where:

O
(n)
θ =


(1− θ(n)1 ) 0 . . . 0

0 (1− θ(n)2 ) . . . 0

. . . . . . . . . . . .

0 0 . . . (1− θ(n)n )


The first step of the proof establishes that the difference between the “mean” (normalized) ad-

jacency matrix and the realized (normalized) adjacency matrix, ||ρ̃nD̃−1n − Ēn||2, is small with

high probability. In the second step, we prove that for any sequence of types γn, the difference

between the expected and realized centrality vector, ||C̃(γn)− C̄(γn)]||∞, is also small with high

probability. Finally, we combine these two steps with Assumption 2 to show that the network is

connected with high probability, so all measures are well-defined, completing the proof.

Step 1: Call Ẽn ≡ ρ̃nD̃
−1
n . Let ψ > 0. Let d(n) = mini d

(n)
i ; that is, d(n) is the expected min-

imum degree. We first show that the Laplacian matrices L̃n = I − D̃
−1/2
n ρ̃nD̃

−1/2
n and L̄n =

I − D̄
−1/2
n ρ̄nD̄

−1/2
n satisfy limn→∞ P[||L̃n − L̄n||2 ≥ ψ] = 0 (i.e., they are equal with high prob-

ability). It follows from Theorem 2 in Chung and Radcliffe (2011) that with probability at least

1− ψ:

||L̃n − L̄n||2 ≤ 2

√
3 log(4n/ψ)

d(n)

By the expected-degrees condition, we know that limn→∞ d
(n)/ log n→∞, which implies that:

lim sup
n→∞

||L̃n − L̄n||2 ≤ lim
n→∞

2

√
3 log(4n/ψ)

d(n)
= 0

establishing the desired result. It is clear that the same implication is true of the matrices:

Ñ ≡ D̃−1/2n ρ̃nD̃
−1/2
n = D̃−1/2n ẼnD̃

1/2

N̄ ≡ D̄−1/2n ρ̄nD̄
−1/2
n = D̄−1/2ĒnD̄

1/2
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Thus, let us write:

lim sup
n→∞

||Ẽn − Ēn||2 ≤ lim sup
n→∞

||D̃1/2ÑD̃−1/2 − D̄1/2N̄D̄−1/2||2

≤ lim sup
n→∞

(
max{||D̃1/2||2, ||D̄1/2||2}

)
||Ñ− N̄||2

(
max{||D̃−1/2||2, ||D̄−1/2||2}

)
≤ lim sup

n→∞
ψ ·
(

max{||D̃1/2||2, ||D̄1/2||2}
)
·
(

max{||D̃−1/2||2, ||D̄−1/2||2}
)

Recall that a∗ij is the binary random variable for whether there exists a link i→ j; note that:

||D̃1/2
n ||2||D̄−1/2n ||2 =

√
maxi

∑n
j=1 a

∗
ij

maxi
∑n

j=1 ρij
≤ max

i

√∑n
j=1 a

∗
ij∑n

j=1 ρij

||D̃1/2
n ||2||D̄−1/2n ||2 =

√
maxi

∑n
j=1 ρij

maxi
∑n

j=1 a
∗
ij

≤ max
i

√∑n
j=1 ρij∑n
j=1 a

∗
ij

which are both bounded above almost surely. To see this, note that for n large, we can apply the

Lyapunov Central Limit Theorem (see Billingsley (1995)):

lim
n→∞

∑
j=1 a

∗
ij∑n

j=1 ρij
− 1 ∼ 1∑n

j=1 ρij
N

0,

n∑
j=1

ρij(1− ρij)


∼ 1√

log n
N (0,Ωn)

where Ωn → 0. If z1, . . . , zn are normally distributed with variance σ2, then by the Fisher-Tippet-

Gnedenko theorem (see Charras-Garrido and Lezaud (2013) and Taylor (2011)), we see that:

E
[
max
i
zi

]
∈ O(σ

√
log n)

Therefore, we have by Jensen’s inequality:

E

[
max
i

√∑n
j=1 a

∗
ij∑n

j=1 ρij

]
= E

[√
max
i

∑n
j=1 a

∗
ij∑n

j=1 ρij

]

≤

√√√√E

[
max
i

∑n
j=1 a

∗
ij∑n

j=1 ρij

]
∈ 1 +O(

√
Ωn)

n→∞→ 1

which by Markov’s inequality suggests for any κ > 0:

lim
n→∞

P

[
max
i

√∑n
j=1 a

∗
ij∑n

j=1 ρij
≤ (1 + κ)

]
= 1

Similar reasoning proves the second case where maxi D̃n < maxi D̄n. This establishes that ||Ẽn−
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Ēn||2 is small with high probability.

Step 2: We note then that Ãn = O
(n)
θ Ẽn and Ān = O

(n)
θ Ēn. Fix a sequence of influence

vectors, γn. For every ψ > 0, we can write for large enough n:

∣∣∣∣∣∣(I− Ãn)−1 − (I− Ān)−1
∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ ∞∑
k=0

(
Ãk
n − Āk

n

) ∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ ∞∑
k=0

Ok
n(Ẽk

n − Ēk
n)
∣∣∣∣∣∣
2

≤
∞∑
k=0

∣∣∣∣∣∣Ok
n

∣∣∣∣∣∣
2

∣∣∣∣∣∣Ẽk
n − Ēk

n

∣∣∣∣∣∣
2

≤
∞∑
k=0

(
1− inf

i
θ
(n)
i

)k
ψ

≤ ψ

infi θ
(n)
i

Note that this implies for large n and any γn:

(
(I− Ãn)−1 − (I− Ān)−1

)(
γn � θ(n)

)
≤ ψ

infi θ
(n)
i

1� θ(n)

≤
ψ supi θ

(n)
i

infi θ
(n)
i

1 ≤ ψν1

by the normal society condition on θ(n).6 Therefore, we can bound this difference from above by

any constant ζ > 0; in particular, for any ζ > 0:

lim
n→∞

P
[∣∣∣∣∣∣((I− Ãn)−1 − (I− Ān)−1

)(
γ � θ(n)

)∣∣∣∣∣∣
∞
≥ ζ
]

= 0

Thus, as n→∞, with high probability we have for every µ > 0 and γn:

lim
n→∞

P
[∣∣∣∣∣∣C̃(γn)− C̄(γn)]

∣∣∣∣∣∣
∞
≥ µ

]
= 0

as desired.

Step 3: Under Assumption 2, ρ̄nD̄
−1
n has a non-vanishing spectral gap, then for sufficiently

large n, we know any two nodes i and j in the realized network G̃n are connected with high prob-

ability. To see this, we first construct a directed network T by assigning weights tij = [ρ̄nD̄
−1
n ]ij .

6One should note that we do not require the normal society condition to hold for agent i if γi = 0.
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The (normalized) Laplacian matrix of the directed network T is given by:

L = I− D̄−1/2n ρ̄nD̄
−1/2
n

We use the result of Chung (2005) which provides a Cheeger inequality for directed networks:

namely, that the conductance of T , φ(T ), is bounded below by λT2 /2. Note that φ(T ) = φ(Ēn),

and therefore we know that as n→∞, φ(Ēn) ≥ (1− η)/2 ≡ κ > 0, where η is ratio of the first two

eigenvalues.

Consider the network Ē∗n = ĒnD̄n

(
D̄∗n
)−1 Then Ē∗n is symmetric, so by Chung and Radcliffe

(2011) and the same reasoning as in Step 1 (along with the fact that Ē∗n and I−L̄∗n have the same

eigenvalues), we know that:

||λ̃∗µ − λ̄∗µ||2 ≤ 2

√
3 log(4n/ψ)

d(n)

for µ = 1, 2. Note that limn→∞ d
(n)/ log n =∞ since Ēn has a non-vanishing spectral gap (and the

previous conductance argument), and limn→∞ d
(n)/ log n = ∞ by the expected-degrees condi-

tion. This implies that with high probability, Ẽ∗n has no vanishing spectral gap, and so using the

standard Cheeger inequality proves that it is connected w.h.p. Since Ẽ∗n is connected if and only

if Ẽn is, we see that Ẽn is connected w.h.p. and therefore, the network is connected. Combining

this with mini θ
(n)
i > 0, we know that the centrality measure C̃ is well-defined by Lemma 3 in

Mostagir et al. (2019).

Theorem 1 states that under the conditions above, it suffices to consider Ḡn instead of G̃n as

n → ∞. This provides a major technical simplification in a variety of examples as we illustrate

in Section 4.

3 Theory Failure Examples

In this section, we provide examples to show that the Expected Degrees and Normal Society

conditions required for Theorem 1 cannot be dispensed with.

Example 1 (Non-Uniform Slow Degree Growth). Suppose the society Sn has the link probability

matrix:

ρn =


0 1 · · · 1 1/2

1 0 · · · 1 0

· · · · · · · · · · · · · · ·
1 1 · · · 0 1

1/2 0 · · · 1 0


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n−1

n

(a) n nodes.

1

2

3 n

n+1

(b) n+ 1 nodes.

12

3

n+1

n+2

(c) n+ 2 nodes.

Figure 1. The expected network (solid links = weight 1, dashed lines = weight 1/2).

In other words, the first n− 1 nodes are arranged in a clique of size n− 1, with the nth node adja-

cent node n− 1 almost surely, and node n adjacent to node 1 with probability 1/2. The expected

network is given in Figure 1, whereas the possible realized networks are given in Figure 2. We

assume that every two out of three (red) nodes have θ(n)i = 1/2 and γi = 1, while one out of three

(blue) nodes have θ(n)i = 1 and γi = 0.

It can be shown via a walk-counting argument that the centrality of all red nodes 2 ≤ i ≤

(n−1) is at most approximately 2/3 for large n. Similarly, for node n (in average network (a)), her

centrality is equal to at most (approximately) 13/18 > 2/3.

On the other hand, consider the realized network for society Sn. In this case, G̃n looks like

one of the two networks in Figure 2, each with equal probability. For large n the centralities of all

12

3

n−1

n

(a) Centrality of node n is 2/3.

12

3

n−1

n

(b) Centrality of node n is 5/6.

Figure 2. The realized network (all links are the same).

nodes 2 ≤ i ≤ (n − 1) are approximately unchanged from the average network. In network (a),

the maximal centrality of node n is strictly less than in the average network; in particular, it is

12



Figure 3. Example where the Non-normal Society assumption is violated.

equal to 2/3, the same as all other nodes in the network. In network (b), the maximal centrality

of node n is strictly more than in the average network; in particular, it is equal to 5/6. Therefore,

G̃n in network (b) has a node with centrality 2/3 with probability 1/2 and centrality 5/6 with

probability 1/2.

Of course, for any node i, as n → ∞, the expected degree of node i grows faster than log n (it

grows linearly!), but the minimum expected degree is constant.

Example 2 (Non-Normal Society). For ease of notation, let us define n∗ = n− log2(n). Suppose

the first log2(n) nodes have θi = 1 and γi = 0, the next two nodes have θ = 1/n∗ and γi = 1

(who we will call semi-stubborn), and the remaining nodes have θ = 1/ exp(n∗) and γi = 1 (the

former group is blue/shaded, and the latter two groups are red/solid, as seen in Figure 3.) All

of the red nodes are pairwise adjacent with probability 1 in a clique; all of the blue nodes are

pairwise adjacent with probability 1 in a clique as well. Suppose the first semi-stubborn red

node is adjacent to the first blue node with probability 1 (so the network is always connected),

whereas the second semi-stubborn node is adjacent to the first blue node with only probability

1/2 (called the critical node). All other (non semi-stubborn) red nodes are never adjacent to a

blue node.

When the critical red node is adjacent to the blue node, the walks to the blue nodes is given

by:

w =
2

n∗
wss +

n∗ − 2

n∗
w

wss =
n∗ − 1

n2∗
+

(n∗ − 2)(n∗ − 1)

n2∗
w

which as n → ∞ (so n∗ → ∞) satisfies w = wss = 1/3. Now, consider the case where the red

13



node is not adjacent to the blue node; the walks to the blue nodes are given by:

w =
1

n∗
wc +

1

n∗
wss +

n∗ − 2

n∗
w

wss =
n∗ − 1

n2∗
+

(n∗ − 1)(n∗ − 2)

n2∗
w +

n∗ − 1

n2∗
wc

wc =
n∗ − 2

n∗
w +

1

n∗
wss

which as n → ∞ satisfies w = wss = wc = 0. Clearly the normal society condition is violated

since the semi-stubborn nodes hold θ = 1/n∗ and other red nodes hold θ = 1/ exp(n∗), and

limn→∞(1/n∗)/(1/ exp(n∗)) =∞. And, consequently, the result of Theorem 1 cannot be applied.

4 Applications

Application 1: Opinion Dynamics with Friending/Unfriending. Consider a social network G(t)

which is evolving over time. Assume all agents are initially linked to a constant fraction of the

population and G(t) evolves according to the following process:

1. For every neighbor of agent i, delete an existing link i → j (i.e., unfriend) with probability

pi, and delete the symmetric link j → i.

2. For every non-neighbor of agent i, add a non-existing link i → j (i.e., friend) with proba-

bility qi, and add the symmetric link j → i.

3. Run the stubborn-agent opinion dynamics and observe the change in limiting agent be-

liefs.

We are interested in understanding the opinions of agents in the network G(t), given the network

looks like G(0) today. As an immediate consequence of Theorem 1, we observe that for large n,

all agents’ opinion dynamics will be close to their expectation. In particular, for G(1), we have:

ρij =

(1− pi)(1− pj) , if j ∈ N(i)

1− (1− qi)(1− qj) , if j 6∈ N(i)

Then, we can compute the “expected” opinion dynamics for normal agents:

πi,t+1 =
(1− pi)(1− pj)

d̄i

∑
j∈N(i)

πj,t +
1− (1− qi)(1− qj)

d̄i

∑
j 6∈N(i)

πj,t
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where d̄i = (1 − pi)
∑

j∈N(i)(1 − pj) +
∑

j 6∈N(i)(1 − (1 − qi)(1 − qj)). Using standard techniques,

one can compute limt→∞ πi,t for all agents i. Under the random evolution of the network, each

agent’s true limiting belief will be close to this computation for sufficiently large population

sizes.

Application 2: Assortative Random Matching and Financial Volatility. Consider a financial

model of contagion similar to Elliott et al. (2014) where banks hold fundamental assets of ran-

dom value αi, but also shares in each other ωij . Thus, the fundamental value of the bank can be

written recursively as v = α + Ωv. This follows the same form of the input-output economy, so

our centrality measure can be used to measure aggregate volatility. In reality, Ω is endogenously

chosen by the banks, and has been shown (e.g., Guttman (2008)) that strong banks typically

invest in other strong banks, whereas weak banks typically invest in other weak banks (this is

known as assortative matching ). The question is whether this assortative matching is better for

aggregate volatility relative to uniformly-at-random matching.

For large n, Theorem 1 first establishes that there is an answer, in the sense that with high

probability one regime will always be more volatile than the other. Let us assume for simplic-

ity that banks are either “strong” or “weak” and in the assortative matching regime, banks of

the same type match with probability ps and banks of different types match with probability

pd. On the other hand, in the uniformly-at-random matching regime, all banks match with the

same probability p. Then we obtain values va,vuar for the banks with assortative matching and

uniformly-at-random matching, respectively:

va = (I−Pa)
−1α

vuar = (I−Puar)
−1α

where

Pa =
2

n(ps + pd)

(
ps1 pd1

pd1 ps1

)
Puar =

1

n
I

which allows us to directly compare the volatilities of banks’ fundamental values. Moreover,

by Theorem 1, we can be confident that these results generalize to the case where many banks

match assortatively/uniformly-at-random, even though the above analysis is done only in ex-

pectation.
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Application 3: Pricing with Network Knowledge. Consider the model from before of Candogan

et al. (2012), with a monopolist who chooses prices p = {pi}ni=1 to maximize profits. Each agent

i has a fixed weight on how much the externality affects their own consumption; in particular,

each agent has constantGi =
∑n

j=1 gij < 2bi. Then, the network is formed randomly according to

some matrix of link probabilities ρ, and each agent splits its Gi evenly across all of its neighbors.

The question is: how much value does the realized network structure add to the monopo-

list’s pricing decision? By Theorem 1, as n → ∞, the answer is none. It suffices to only know

the network generation process. In particular, a monopolist can set prices according to the ex-

pected network, and the profits from doing so arbitrarily approximate the optimal pricing with

complete network knowledge.

This complements two results in the paper of Candogan et al. (2012). First, it provides a nice

follow-up to Corollary 1, which states that in a symmetric network, pricing is independent of the

network. Our conclusion shows that while the network of connections is symmetric, the matrix

of externalities G = {gij} is not, and therefore it might still be optimal for a monopolist to take

into account network effects as the number of agents n grows large (e.g., giving discounts to

central agents) when choosing his pricing vector p. Second, this result adds to the discussion in

Section 5 in Candogan et al. (2012) regarding the value of knowing the exact network structure.

In special cases, where the network is drawn from a distribution of the form in Section 2 in this

paper, knowledge of the realized network provides no added value over the expected network,

and a monopolist can use his knowledge of the latter to extract almost all of the profits.

5 Conclusion

This paper introduces row-stochastic centrality and offers a result that simplifies the study of

this centrality measure in stochastic and dynamic networks. Because the normalized adjacency

matrix is asymmetric, the recent work on centrality in random networks does not apply to this

centrality measure, and therefore cannot be applied to network problems that utilize this mea-

sure in their analyses.

By showing that row-stochastic centrality measures in random networks are close to their

values in the average network, the stochastic and dynamic versions of several applications in

the literature can be reduced to studying the average matrix. Empirical studies (e.g. Conley and

Udry (2010)) routinely collect statistical information about the likelihood of link formation, and

our main result shows that this information is enough to derive results that are highly robust
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to the realized network structure. Given the prevalence of row-stochastic centrality in many

network applications, we expect that our results have broader applicability beyond the examples

presented in this paper.
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