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and Endogenous Echo Chambers



Organic News vs. Misinformation
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u Misinformation is bad for communicating the ground truth.

u Mostagir and Siderius (2021): How Do We Control Misinformation? It 
Depends on Reasoning Abilities
u Share beliefs: agents consume content but then share their opinions 

over social media.
u Two sophistication types: sophisticated and unsophisticated.  Update 

beliefs based on content and learn from other beliefs differently.

u Acemoglu, Ozdaglar, and Siderius (2021): Misinformation: Strategic 
Sharing, Homophily, and Endogenous Echo Chambers
u Share content: agents choose whether to pass content onto others.
u When does misinformation spread?
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But there is often mislearning…

Higher sophistication can lead to 
more disagreement on political issues 

such as climate change 

Allcott and Gentzkow (2017) Corbin (2016)



Motivation: Misinformation

Growing distrust in media outlets
Disagreement over where the 
misinformation is coming from

Allcott and Gentzkow (2017) van der Linden (2020)
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Sophistication Types
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What breaks learning?

Left Narrative Right Narrative

Organic Information

Misinformation

Aggregate News

Equivalent Observations

Unsophisticated:  Learning occurs if and only if misinformation does not advocate too much 
for the opposite of 𝜃 (i.e., 𝑟 < 𝑟$∗ for some 𝑟$∗). 

Sophisticated:  Learning occurs if there is a unique narrative.



Biased or Bayesian updating?

Tappin, Pennycook, and Rand (2019)

CRT Sum Score
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How does misinformation 
regulation affect the learning of 
different sophistication types?



Policy 1: Diverse Content

Policy 2: Censorship

Policy 3: Accuracy Nudging

Policy 4: Performance Targets
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likelihood of showing R. 

u Benefit: Reduces the likelihood that misinformation is heavily skewed 
toward either L or R.

u Potential Cost: Reduces the strength of the organic content.
u Similar conclusions hold for “counter-attitudinal” news where content is 

provided intentionally against belief.
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u Unsophisticated: Always effective and ultimately allows organic (but 

weaker) information to dominate.
u Sophisticated: “Pandora’s box” effect.  Effective provided q is not too 

large.
u When q is small, sophisticated agents can thrive.  Pulling content toward 

center prevents latching onto separate narratives.

u When q is large, sophisticated agents do worse  Pulling content toward 
center permits the telling of more drastic narratives.

u Counter-attitudinal content induces more sympathy: Levy (2021)
u Counter-attitudinal leads to more rejection of other side: Bail et al (2018)
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“Many governments are grappling with how to approach the spread of misinformation, but few 
have outlawed it. As the UN and others have noted, the general criminalization of sharing 
misinformation would be ‘incompatible with international standards for restrictions on freedom 
of expression.’”

Facebook White Paper Charting A Way Forward: Online Content Regulation

Question:  Do restrictions on freedom of expression (when removing content that contains 
misinformation) ever hurt learning?
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Wilder narratives possible –
believe the platform is part of 
the misinformation problem. 

Learning is worse



Policy 3: Accuracy Nudging

u As suggested by Pennycook et al (2020); Pennycook et al (2021): nudge 
platform users to think critically about the presence of misinformation.
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Small fraction of agents update on perception of accuracy:

u In high-misinformation environments, accuracy nudged 
unsophisticated agents are the most resistant to misinformation. 
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Policy 4: Performance Targets

u Implement a performance target to decrease misinformation.
u Ultimate goal: Reduce the likelihood of mislearning (because of 

misinformation) to some level 𝜙∗ > 𝟎.
u There is a moral hazard cost to decreasing the target more.

u Define misinformation more narrowly.
u Make reporting of misinformation more difficult.
u Reduce efforts to stop misinformation that is already viral.

“Governments could also consider requiring companies to hit specific performance targets, such 
as decreasing the prevalence of content...[with] policy violations. While such targets may have 
benefits, they could also create perverse incentives for companies to find ways to decrease 
enforcement burdens.”

Facebook White Paper Charting A Way Forward: Online Content Regulation
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Policy 4: Performance Targets
Once misinformation becomes a problem, which type of population 
should be regulated more?

u Need to set a low performance target for sophisticated agents to 
mitigate the ability to dismiss other perspectives as misinformation.

u Can get away with setting less stringent targets with 
unsophisticated agents. 

u Regulating the wrong type of population can backfire.
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Motivation: Platform Sharing

Red = misinformation
Green = accurate

Allcott and Gentzkow (2017) Vosoughi et al (2018)
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Model: Lifetime of the Article

Initial Phase

Viral Phase Obsolescent Phase

𝜏"𝜏" ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐶𝑙𝑜𝑐𝑘(𝜆")

𝜏& ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐶𝑙𝑜𝑐𝑘(𝜆&)
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Equilibrium: Cutoffs
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Equilibrium: Strategic Forces

InspectShareInspect

Strategic Substitutes

InspectInspectShareInspect

Strategic Complements

Inspect



Homophily is Bad for Misinformation
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Uniform Connections

Homophily Model
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Combating Misinformation Spread: 
Platform Algorithms

u Require that D!
D"
< �̅� for some �̅� that regulates the 

recommendation algorithm the platform can adopt. 
u Highly-monotone, so �̅� = 1 not necessarily the optimal 

regulation, but �̅� < ∞ is.

𝑝'
𝑝( 𝑝'

𝑝(



Conclusion

u Main tension: the setting where content goes unchecked is exactly 
the setting where platforms should fact-check, but instead 
recommend unverified content.

u Do social media sites have to compromise engagement (e.g., ad 
revenue) to be “socially responsible”?

u Can we design “efficient” algorithms that allow users to have more 
agency over their content but do not propagate misinformation? 
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Model: Agents’ Actions
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Conclusion: Sharing Model
u The platform should choose the sharing network (through 

recommendations) to be one of two possibilities:
u (1) Extremist echo chambers with unverified content
u (2) Diverse content with only verified content

u How do we regulate platforms to push toward (2)?
u Provenance: Show original sources of content
u Censorship: Threaten to censor extreme unverified content
u Segregation Standard: Require platform algorithms to 

spread cross-cutting content across ideologies


