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An Example: Netflix Contest
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Motivation/Literature Review
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What We Do

• Understand incentives for researchers to share progress, and how it shapes
societal outcomes.

I how does a collaborative society use resources to solve complex problems?
I how do rewards influence whether agents hoard preliminary results?
I how should society structure rewards to promote collaborative behavior?

• Try to understand strategic incentives for agents to work on similar problems and
keep breakthroughs private.

• How should a designer better align private incentives and societal goals for
solving a complex problem?

• Today:

I understand the collaborative solution
I characterize the equilibria with private research efforts
I understand optimal design of “partial-progress” rewards
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Model: Society’s Problem

• Society is presented with some complex problem. Complexity of problem has
several dimensions:

I Value to society K > 0 (e.g., cure for cancer vs. marginal technological improvement).
I Time sensitivity of the problem β ∈ (0,1) (e.g., Apollo-11 mission vs. twin-prime

conjecture).
I Difficulty of problem (likelihood p of a breakthrough per unit effort).

• Profitability of effort can be measured as the expected value of the problem’s
solution given the effort today. Decompose into contribution and tractability:

I If value to society (K) is large, solution has a sizable contribution.
I If breakthroughs occur frequently (p) relative to time sensitivity (β), problem is

tractable.

• Whether society exerts effort will depend on whether the solution has a large
contribution and/or reasonable tractability.
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Model: Solving Complex Problems

• Society is composed of n agents, who can each choose whether or not to work on
a given problem.

• Problem requires a sequence of breakthroughs.
I There are m stages of the problem; society is at stage k ∈ {1,2, . . . ,m}.
I Can only progress to stage k + 1 if society currently knows the solution to stage k.

• Time is discrete t = 1,2, . . .
I Each agent i chooses to exert effort ei ,t ∈ {0,1} at each time t on the problem (i.e.,

either the agent works on the problem or not).
I If ei ,t = 1, with probability p agent i advances society from stage st to stage st + 1.

• Society maximizes
∑∞

t=0 β
t
(
K1sol −

∑n
i=1 ei ,t

)
, where 1sol is the first period

where society has advanced to stage m.
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Comparative Statics

• Let `∗(k) denote the total amount of effort exerted at stage k (i.e., the number
of agents working toward the solution).

Proposition
Optimal effort `∗(k) is non-decreasing in k and K.

• Intuition: Sprint to the finish. As society gets closer to solving the problem in its
entirety, devote more resources to finishing the project.

I Holds even though the feasibility of the problem is unaffected by earlier stages’
progress.

I Time-value of the solution: When solution is close, effort today will translate into
contribution soon.
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Non-Monotonicity in p

• How does effort vary with tractability
(as measured by p)?

I Depends on how far away you are
from the solution.

• Low p: breakthroughs are infrequent.
I Many remaining stages =⇒

intractable. Exert little to no effort.
I Few remaining stages, exert a lot of

effort.

• High p: redundant breakthroughs are
common.

I Do not waste resources leading to
multiple (but the same)
breakthroughs in each period.
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Model: Individual Efforts

• Each of the n agents works (or not) on the problem at their own pace.

• Agent i chooses an effort level ei ,t ∈ {0,1}. If ei ,t = 1, then with probability p
agent i advances from step si ,t to step si ,t + 1; that is, si ,t = si ,t−1 + 1.

• Agents may publish “new” results. If last publication was s∗, agent i may publish
any stage s∗∗ such that s∗ < s∗∗ ≤ si ,t .

• After the intermediate progress has been published, all other agents catch up to
this stage; that is, si ,t ←max{si ,t ,s∗∗}.

• Suppose there is a reward for solving the problem. Will any agent voluntarily
publish intermediate results?

I No, this creates additional competition. Inefficient because agents develop the same
intermediate progress in parallel.
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Model: Designer’s Problem

• Suppose instead the designer can commit to offering reward rk for publication of
stage k to incentivize publication.

• Other extreme: set rk = Rk � Rk+1 for every stage k. Then progress evolves just
as in the cooperative solution, where all agents publish every stage immediately.

• Agents care only about extrinsic rewards. For simplicity (and largely WLOG),
assume agents discount payoffs at the same rate.

I They choose to exert effort and whether to publish in order to maximize
E
[∑∞

t=0
βt (ri ,t − ei ,t )

]
, where ri ,t is the reward received by agent i in period t.

• Designer (e.g., a social planner) reaps the societal rewards K , but must pay out
the intermediate rewards rk .

I Chooses reward structure to maximize E
[∑∞

t=0
βt
(
K1sol −

∑n
i=1

ri ,t
)]

.
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Two-Stage Equilibria

• Suppose m = 2, so there is only one intermediate stage. Take as given reward
structure r1, r2 > 0.

Theorem
All pure-strategy, symmetric perfect Bayesian equilibria are of the form:
(i) No agent exerts effort at any point in time.

(ii) Agents exert effort in every period of stage 1 and publish the stage 1 result
immediately. No agent exerts effort in period 2.

(iii) Agents always exert effort in stage 1 until some time T∗. There exists some
interval [∆,∆] such that any agent who has the stage 1 result publishes at (and
only at) times T = {τ1,τ2, . . .}, where τj − τj−1 = ∆∗j for some ∆∗j ∈ [∆,∆].
Agents publish the stage 2 result immediately.
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Intuition: Publication Cycles

• Shortest cycle, ∆, corresponds to most collaborative equilibrium and longest
cycle, ∆, corresponds to most secretive.

I Multiple equilibria because of strategic complementarities.
I Suppose today is Monday and agent i has the stage 1 result. No one will publish until

Thursday. When is the earliest agent i will publish? What if agent i believes her
competitor might publish tomorrow?

• Two effects which jointly determine the range of ∆ supportable in equilibrium:
I Fear of scooping: Wait an extra period, risk too many publications at time τj who split

r1 (or someone finishes stage 2 and gets r1 + r2). Instead could publish today and
guaranteed entire r1.

I Marginal competition: Long publication cycles mean most agents have (independently)
solved stage 1. Publication is not helping as many competitors catch-up.

• After time τj has passed, all agents know that no one has solved stage 1
problem. Environment resets.

12 / 15



Intuition: Publication Cycles

• Shortest cycle, ∆, corresponds to most collaborative equilibrium and longest
cycle, ∆, corresponds to most secretive.

I Multiple equilibria because of strategic complementarities.
I Suppose today is Monday and agent i has the stage 1 result. No one will publish until

Thursday. When is the earliest agent i will publish? What if agent i believes her
competitor might publish tomorrow?

• Two effects which jointly determine the range of ∆ supportable in equilibrium:
I Fear of scooping: Wait an extra period, risk too many publications at time τj who split

r1 (or someone finishes stage 2 and gets r1 + r2). Instead could publish today and
guaranteed entire r1.

I Marginal competition: Long publication cycles mean most agents have (independently)
solved stage 1. Publication is not helping as many competitors catch-up.

• After time τj has passed, all agents know that no one has solved stage 1
problem. Environment resets.

12 / 15



Intuition: Publication Cycles

• Shortest cycle, ∆, corresponds to most collaborative equilibrium and longest
cycle, ∆, corresponds to most secretive.

I Multiple equilibria because of strategic complementarities.
I Suppose today is Monday and agent i has the stage 1 result. No one will publish until

Thursday. When is the earliest agent i will publish? What if agent i believes her
competitor might publish tomorrow?

• Two effects which jointly determine the range of ∆ supportable in equilibrium:
I Fear of scooping: Wait an extra period, risk too many publications at time τj who split

r1 (or someone finishes stage 2 and gets r1 + r2). Instead could publish today and
guaranteed entire r1.

I Marginal competition: Long publication cycles mean most agents have (independently)
solved stage 1. Publication is not helping as many competitors catch-up.

• After time τj has passed, all agents know that no one has solved stage 1
problem. Environment resets.

12 / 15



Intuition: Publication Cycles

• Shortest cycle, ∆, corresponds to most collaborative equilibrium and longest
cycle, ∆, corresponds to most secretive.

I Multiple equilibria because of strategic complementarities.
I Suppose today is Monday and agent i has the stage 1 result. No one will publish until

Thursday. When is the earliest agent i will publish? What if agent i believes her
competitor might publish tomorrow?

• Two effects which jointly determine the range of ∆ supportable in equilibrium:
I Fear of scooping: Wait an extra period, risk too many publications at time τj who split

r1 (or someone finishes stage 2 and gets r1 + r2). Instead could publish today and
guaranteed entire r1.

I Marginal competition: Long publication cycles mean most agents have (independently)
solved stage 1. Publication is not helping as many competitors catch-up.

• After time τj has passed, all agents know that no one has solved stage 1
problem. Environment resets.

12 / 15



Intuition: Publication Cycles

• Shortest cycle, ∆, corresponds to most collaborative equilibrium and longest
cycle, ∆, corresponds to most secretive.

I Multiple equilibria because of strategic complementarities.
I Suppose today is Monday and agent i has the stage 1 result. No one will publish until

Thursday. When is the earliest agent i will publish? What if agent i believes her
competitor might publish tomorrow?

• Two effects which jointly determine the range of ∆ supportable in equilibrium:
I Fear of scooping: Wait an extra period, risk too many publications at time τj who split

r1 (or someone finishes stage 2 and gets r1 + r2). Instead could publish today and
guaranteed entire r1.

I Marginal competition: Long publication cycles mean most agents have (independently)
solved stage 1. Publication is not helping as many competitors catch-up.

• After time τj has passed, all agents know that no one has solved stage 1
problem. Environment resets.

12 / 15



Simplified Designer’s Task

• Recall, designer wishes to maximize expectation of
∑∞

t=0 β
t (K1sol −

∑n
i=1 ri ,t ).

Optimal reward structure (r1, r2) often difficult to solve in general.

• Consider the heuristics: all-or-nothing contest and partial-progress contest.
I All-or-nothing: only reward for final contribution (i.e., r1 = 0) and choose r2 optimally.
I Partial-progress: choose r2 smallest so agents still exert effort in period 2, choose r1

strategically.
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Simulated Designs
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Optimal Reward Structure: Results

• Recall tractability (π) is the measure of the rate of progress (via p) relative to
the time sensitivity of the problem (via β). Formally,

π =
β(1− p)n

(1− β)(1− (1− p)n)

Theorem
As π→ 0 or π→∞, the all-or-nothing contest is the optimal partial-progress contest.

• Publication of partial progress is most important when the problem is somewhat
tractable.

I As tractability increases, optimal reward structure induces the most secrecy and
longest publication cycles.

Theorem
There exists π∗ such that the optimal r1 is increasing for all π < π∗ and decreasing for
all π > π∗.

• If a tractable problem becomes more tractable or intractable problem becomes
more tractable, increase the intermediate progress rewards.
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