Learning and Manipulation in Social Networks

James Siderius¹, Mohamed Mostagir², and Asu Ozdaglar¹

Network Science and Economics Conference

April 28, 2019

¹MIT EECS LIDS ²University of Michigan Ross School of Business

Motivation

Motivation

"Whereas bots that spread malware and unsolicited content disseminated antivaccine messages, Russian trolls promoted discord. Accounts masquerading as legitimate users create false equivalency, eroding public consensus on vaccination."

> American Journal of Public Health October 2018

WORLD

RUSSIAN TROLLS PROMOTED ANTI-VACCINATION PROPAGANDA THAT MAY HAVE CAUSED MEASLES OUTBREAK, RESEARCHER CLAIMS

BY CRISTINA MAZA ON 2/14/19 AT 3:52 PM EST

Introduction

Introduction

Introduction

• We study the classical learning problem with unknown state of the world $y \in \{S, R\}$. Is vaccination safe (S) or risky (R)?

- We study the classical learning problem with unknown state of the world $y \in \{S, R\}$. Is vaccination safe (S) or risky (R)?
 - Organic news: News generation process for each agent, receive signals $s_{i,t} \in \{S, R\}$ correlated with the underlying state at arrival t.
 - Fake news: Spurious process with signals unrelated to the state.

Related Literature

- Bayesian learning
 - Acemoglu et al (2011), Bikhchandani et al (1992)
- DeGroot-style learning
 - Golub and Jackson (2010), Jadbabaie et al (2012), Molavi et al (2018)
- Mixed-learning environments
 - Mueller-Frank (2014), Chandrasekhar et al (2015), Bohren and Hauser (2017), Pennycook and Rand (2018)
- Propagation of fake news and misinformation
 - Candogan and Drakopoulos (2017), Papanastasiou (2018), Acemoglu et al (2010)
- Reputation effects
 - Kreps and Wilson (1982), Milgrom and Roberts (1982), Fudenberg-Levine (1989), Gossner (2011)

• Question: How does learning depend on...

- Question: How does learning depend on...
 - ...the sophistication and reasoning abilities of the agents?

- Question: How does learning depend on...
 - ...the sophistication and reasoning abilities of the agents?
 - ...the signals received by the agents?

- Question: How does learning depend on...
 - ...the sophistication and reasoning abilities of the agents?
 - ...the signals received by the agents?
 - ...the underlying communication structure?

- Question: How does learning depend on...
 - ...the sophistication and reasoning abilities of the agents?
 - ...the signals received by the agents?
 - ...the underlying communication structure?
- Assume there is a principal who interacts with the agents and may have a specific agenda (i.e., wants them to mislearn).
 - Examples: Russian propaganda, oil interests, marketing campaigns, etc.
- When the signal structure is endogenous, can agents learn the truth?

• *n* agents interact in continuous-time over a finite horizon *T*.

- *n* agents interact in continuous-time over a finite horizon *T*.
- Unknown state of the world $y \in \{S, R\}$ drawn once at t = 0 with common prior q of state S.

- *n* agents interact in continuous-time over a finite horizon *T*.
- Unknown state of the world $y \in \{S, R\}$ drawn once at t = 0 with common prior q of state S.
- Agent *i*'s organic news generation process is Poisson with unknown intensity $\lambda_i \ge 0$.
- Each Poisson arrival at time t provides a signal $s_{i,t}$ with distribution $\mathbb{P}[s_{i,t} = y] = p_i > 1/2$, independent over time and across agents.

- *n* agents interact in continuous-time over a finite horizon *T*.
- Unknown state of the world $y \in \{S, R\}$ drawn once at t = 0 with common prior q of state S.
- Agent *i*'s organic news generation process is Poisson with unknown intensity $\lambda_i \ge 0$.
- Each Poisson arrival at time t provides a signal $s_{i,t}$ with distribution $\mathbb{P}[s_{i,t} = y] = p_i > 1/2$, independent over time and across agents.
- If $\lambda_i = 0$ agent *i* is oblivious she cannot distinguish the state on her own.
- If λ_i > 0 agent i is informed she can distinguish the true state when only organic news is received.

Principal Setup

• Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}).

- Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}).
- Principal chooses a message $\hat{y} \in \{S, R\}$ and then chooses a network strategy $\mathbf{x} \in \{0, 1\}^n$.

- Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}) .
- Principal chooses a message $\hat{y} \in \{S, R\}$ and then chooses a network strategy $\mathbf{x} \in \{0, 1\}^n$.
- If the principal is truthful, he is committed to playing $\mathbf{x} = 0$. If the principal is strategic, he may choose any strategy he wants.

- Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}) .
- Principal chooses a message ŷ ∈ {S, R} and then chooses a network strategy x ∈ {0,1}ⁿ.
- If the principal is truthful, he is committed to playing **x** = 0. If the principal is strategic, he may choose any strategy he wants.
- Principal pays an investment cost of $\epsilon > 0$ for every agent *i* influenced (i.e., $c(\mathbf{x}) = \sum_{i=1}^{n} \epsilon \mathbf{1}_{x_i=1}$).

- Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}) .
- Principal chooses a message ŷ ∈ {S, R} and then chooses a network strategy x ∈ {0,1}ⁿ.
- If the principal is truthful, he is committed to playing $\mathbf{x} = 0$. If the principal is strategic, he may choose any strategy he wants.
- Principal pays an investment cost of $\epsilon > 0$ for every agent *i* influenced (i.e., $c(\mathbf{x}) = \sum_{i=1}^{n} \epsilon \mathbf{1}_{x_i=1}$).
- Investment to influence agent i: send an independent Poisson process of fixed intensity λ* with signal s = ŷ.

- Principal has a type ω either truthful (\mathcal{T}) or strategic (\mathcal{S}) .
- Principal chooses a message ŷ ∈ {S, R} and then chooses a network strategy x ∈ {0,1}ⁿ.
- If the principal is truthful, he is committed to playing $\mathbf{x} = 0$. If the principal is strategic, he may choose any strategy he wants.
- Principal pays an investment cost of $\epsilon > 0$ for every agent *i* influenced (i.e., $c(\mathbf{x}) = \sum_{i=1}^{n} \epsilon \mathbf{1}_{x_i=1}$).
- Investment to influence agent i: send an independent Poisson process of fixed intensity λ* with signal s = ŷ.
 - Key assumption: Agents cannot distinguish between organic news and principal's fake news.

Agent Setup

• Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).

- Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).
- Each Bayesian agent *i* has a neighborhood N_i ⊂ {1,...,n} of friends it observes.

- Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).
- Each Bayesian agent *i* has a neighborhood N_i ⊂ {1,...,n} of friends it observes.
- Each DeGroot agent *i* is influenced by agent *j*'s beliefs proportionally to α_{ij} and by its own news signals proportionally to θ_i , with $\theta_i + \sum_{i=1}^n \alpha_{ij} = 1$.

- Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).
- Each Bayesian agent *i* has a neighborhood N_i ⊂ {1,...,n} of friends it observes.
- Each DeGroot agent *i* is influenced by agent *j*'s beliefs proportionally to α_{ij} and by its own news signals proportionally to θ_i , with $\theta_i + \sum_{i=1}^n \alpha_{ij} = 1$.
- For every interval of length Δ > 0, agents exchange beliefs π_{i,t} about the state of the world y:

- Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).
- Each Bayesian agent *i* has a neighborhood N_i ⊂ {1,...,n} of friends it observes.
- Each DeGroot agent *i* is influenced by agent *j*'s beliefs proportionally to α_{ij} and by its own news signals proportionally to θ_i , with $\theta_i + \sum_{i=1}^n \alpha_{ij} = 1$.
- For every interval of length Δ > 0, agents exchange beliefs π_{i,t} about the state of the world y:
 - Bayesian agents play a perfect Bayesian equilibrium against the principal observing beliefs $\pi_{i,t}$ in their neighborhood \mathcal{N}_i .

- Agents have different reasoning abilities: either Bayesian (\mathcal{B}) or DeGroot (\mathcal{D}).
- Each Bayesian agent *i* has a neighborhood N_i ⊂ {1,...,n} of friends it observes.
- Each DeGroot agent *i* is influenced by agent *j*'s beliefs proportionally to α_{ij} and by its own news signals proportionally to θ_i , with $\theta_i + \sum_{i=1}^n \alpha_{ij} = 1$.
- For every interval of length Δ > 0, agents exchange beliefs π_{i,t} about the state of the world y:
 - Bayesian agents play a perfect Bayesian equilibrium against the principal observing beliefs $\pi_{i,t}$ in their neighborhood \mathcal{N}_i .
 - DeGroot agents update beliefs taking news at face value:

$$\pi_{i,t+1} = \theta_i \cdot \mathsf{BU}(\mathsf{news}_t) + \sum_{j=1}^n \alpha_{ij} \pi_{j,t}$$

Terminal Payoffs

• At time T, agent i is forced to commit to one action $a_i \in \{S, R\}$.

Terminal Payoffs

- At time T, agent i is forced to commit to one action $a_i \in \{S, R\}$.
 - Agents want to match their action a_i with the unknown state y.

Terminal Payoffs

- At time T, agent i is forced to commit to one action $a_i \in \{S, R\}$.
 - Agents want to match their action a_i with the unknown state y.
 - Principal always wants agents to play $a_i = R$, regardless of y.

Terminal Payoffs

- At time T, agent i is forced to commit to one action $a_i \in \{S, R\}$.
 - Agents want to match their action a_i with the unknown state y.
 - Principal always wants agents to play $a_i = R$, regardless of y.

Table: Terminal Game.

- Agent's payoff $u_i^a(y, a_i)$ and assume $b \in (-1, 1)$.
- Principal's benefit given additively $u^p(\mathbf{a}) = \sum_{i=1}^n u_i^p(a_i)$.
- Total payoff of principal is benefit less investment: $u^p(\mathbf{a}) c(\mathbf{x})$.
Manipulation

• We say that agent *i* is manipulated if in equilibrium:

- We say that agent *i* is manipulated if in equilibrium:
 - (a) Her terminal action a_i does not match the underlying state y when the principal's type is strategic.

- We say that agent *i* is manipulated if in equilibrium:
 - (a) Her terminal action *a_i does not* match the underlying state *y* when the principal's type is strategic.
 - (b) Her terminal action a_i does match the underlying state y when the principal's type is truthful.

- We say that agent *i* is manipulated if in equilibrium:
 - (a) Her terminal action *a_i* does not match the underlying state *y* when the principal's type is strategic.
 - (b) Her terminal action a_i does match the underlying state y when the principal's type is truthful.
- We refer to the collection of neighborhoods $\{N_i\}_{i\in\mathcal{B}}$ and weights (θ, \mathbf{A}) as the *network structure*.
- We say the network is impervious to manipulation if no agent is manipulated, and otherwise susceptible.

- We say that agent *i* is manipulated if in equilibrium:
 - (a) Her terminal action *a_i* does not match the underlying state *y* when the principal's type is strategic.
 - (b) Her terminal action a_i does match the underlying state y when the principal's type is truthful.
- We refer to the collection of neighborhoods $\{N_i\}_{i\in\mathcal{B}}$ and weights (θ, \mathbf{A}) as the *network structure*.
- We say the network is impervious to manipulation if no agent is manipulated, and otherwise susceptible.
- By Jadbabaie et al (2012): under standard network connectedness assumptions, all agents learn the true state *y* for large *T*.

- We say that agent *i* is manipulated if in equilibrium:
 - (a) Her terminal action *a_i* does not match the underlying state *y* when the principal's type is strategic.
 - (b) Her terminal action a_i does match the underlying state y when the principal's type is truthful.
- We refer to the collection of neighborhoods {N_i}_{i∈B} and weights (θ, A) as the *network structure*.
- We say the network is impervious to manipulation if no agent is manipulated, and otherwise susceptible.
- By Jadbabaie et al (2012): under standard network connectedness assumptions, all agents learn the true state *y* for large *T*.
- What if the principal is strategic and $T \rightarrow \infty$?

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists $p^* < 1$ such that if there is one informed agent with $p_i > p^*$, no Bayesian agent is manipulated.

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists $p^* < 1$ such that if there is one informed agent with $p_i > p^*$, no Bayesian agent is manipulated.

 Need for "experts" as in Acemoglu et al (2011); otherwise may be profitable to invest x = 1 when ε is small and fool the entire community.

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists $p^* < 1$ such that if there is one informed agent with $p_i > p^*$, no Bayesian agent is manipulated.

- Need for "experts" as in Acemoglu et al (2011); otherwise may be profitable to invest x = 1 when ε is small and fool the entire community.
- Note the "expert" need not be a Bayesian, and it is even possible all Bayesian agents be oblivious (i.e., receive no news themselves)!

• Bayesian agents are eventually stubborn agents with accurate beliefs (i.e., $\pi_i(y) = 1$ for all $i \in \mathcal{B}$).

- Bayesian agents are eventually stubborn agents with accurate beliefs (i.e., $\pi_i(y) = 1$ for all $i \in \mathcal{B}$).
- If λ_i > λ^{*}/(2p_i − 1), DeGroot agent i is a specialist and otherwise she is amenable.

- Bayesian agents are eventually stubborn agents with accurate beliefs (i.e., $\pi_i(y) = 1$ for all $i \in \mathcal{B}$).
- If λ_i > λ^{*}/(2p_i − 1), DeGroot agent i is a specialist and otherwise she is amenable.
 - Specialist agents are discerning of the true state from their own news regardless of the presence of fake news.
 - Amenable agents have little precision in their signal distribution, so if $x_i = 0$ the news appears as state y, but if $x_i = 1$ it appears as the opposite state.

- Bayesian agents are eventually stubborn agents with accurate beliefs (i.e., $\pi_i(y) = 1$ for all $i \in \mathcal{B}$).
- If λ_i > λ^{*}/(2p_i − 1), DeGroot agent i is a specialist and otherwise she is amenable.
 - Specialist agents are discerning of the true state from their own news regardless of the presence of fake news.
 - Amenable agents have little precision in their signal distribution, so if $x_i = 0$ the news appears as state y, but if $x_i = 1$ it appears as the opposite state.
- Limit beliefs of DeGroots can be characterized by:

$$\boldsymbol{\pi}(\boldsymbol{y}) = (\mathbf{I} - \tilde{\mathbf{A}})^{-1} (\boldsymbol{\theta} \otimes \boldsymbol{\gamma})$$

where $\gamma_i = 1$ if agent *i* is either Bayesian, a specialist, or $x_i = 0$.

Sufficiency for Imperviousness

- Let \mathcal{P}_{ij} be the set of paths between agents i and j in the network.
- $\bullet\,$ We can define the log-diameter of the network G to be:

$$d_{\mathbf{G}} \equiv \max_{i,j \in \mathcal{D}} \min_{P_{ij} \in \mathcal{P}_{ij}} \sum_{(k \to \ell) \in P_{ij}} -\log_n(\alpha_{k\ell})$$

where we "skip" over Bayesian agents in the path summation.

Sufficiency for Imperviousness

- Let \mathcal{P}_{ij} be the set of paths between agents i and j in the network.
- We can define the log-diameter of the network G to be:

$$d_{\mathbf{G}} \equiv \max_{i,j \in \mathcal{D}} \min_{P_{ij} \in \mathcal{P}_{ij}} \sum_{(k \to \ell) \in P_{ij}} -\log_n(\alpha_{k\ell})$$

where we "skip" over Bayesian agents in the path summation.

Theorem. (Small Log-Diameter)

For any δ , there exists *m* such that if network **G** has log-diameter at most δ , then it is impervious to manipulation if there are at least *m* Bayesian agents.

Sufficiency for Imperviousness

- Let \mathcal{P}_{ij} be the set of paths between agents i and j in the network.
- $\bullet\,$ We can define the log-diameter of the network G to be:

$$d_{\mathbf{G}} \equiv \max_{i,j \in \mathcal{D}} \min_{P_{ij} \in \mathcal{P}_{ij}} \sum_{(k \to \ell) \in P_{ij}} -\log_n(\alpha_{k\ell})$$

where we "skip" over Bayesian agents in the path summation.

Theorem. (Small Log-Diameter)

For any δ , there exists *m* such that if network **G** has log-diameter at most δ , then it is impervious to manipulation if there are at least *m* Bayesian agents.

• Implies complete network is impervious; star network is also impervious *even if* Bayesians are on the periphery.

The Ring Network, cont.

The Ring Network, cont.

• Need a linear number of Bayesian agents sprinkled throughout!

• Weak homophily model: k groups with proportion of the population (s_1, \ldots, s_k) . Within-group link probability is p_s and between-group link probability is p_d .

- Weak homophily model: k groups with proportion of the population (s_1, \ldots, s_k) . Within-group link probability is p_s and between-group link probability is p_d .
- Under certain regularity conditions, manipulation in random network *reduces* to manipulation in expected network (see paper).

- Weak homophily model: *k* groups with proportion of the population (s_1, \ldots, s_k) . Within-group link probability is p_s and between-group link probability is p_d .
- Under certain regularity conditions, manipulation in random network *reduces* to manipulation in expected network (see paper).
- With communities of the same size $(s_1 = \ldots = s_k = 1/k)$ the network cannot go from impervious to susceptible if we (i) decrease p_s , (ii) increase p_d , or (iii) more evenly distribute the Bayesian agents. However:

- Weak homophily model: *k* groups with proportion of the population (s_1, \ldots, s_k) . Within-group link probability is p_s and between-group link probability is p_d .
- Under certain regularity conditions, manipulation in random network *reduces* to manipulation in expected network (see paper).
- With communities of the same size $(s_1 = \ldots = s_k = 1/k)$ the network cannot go from impervious to susceptible if we (i) decrease p_s , (ii) increase p_d , or (iii) more evenly distribute the Bayesian agents. However:
 - All of these can cause manipulation to increase if manipulation already exists.

- Weak homophily model: *k* groups with proportion of the population (s_1, \ldots, s_k) . Within-group link probability is p_s and between-group link probability is p_d .
- Under certain regularity conditions, manipulation in random network *reduces* to manipulation in expected network (see paper).
- With communities of the same size $(s_1 = \ldots = s_k = 1/k)$ the network cannot go from impervious to susceptible if we (i) decrease p_s , (ii) increase p_d , or (iii) more evenly distribute the Bayesian agents. However:
 - All of these can cause manipulation to increase if manipulation already exists.
 - Does not hold for communities of different sizes.

Strong Homophily

- Strong homophily: Groups are totally ordered. Within-group link probability is still p_s , but between-group link probability is p_d only for the two nearest communities (and otherwise 0).
 - For simplicity, assume one island contains all of the Bayesian agents.

- Strong homophily: Groups are totally ordered. Within-group link probability is still p_s , but between-group link probability is p_d only for the two nearest communities (and otherwise 0).
 - For simplicity, assume one island contains all of the Bayesian agents.
- For large *n*, the strong homophily model with sufficiently many communities $\{s_\ell\}_{\ell=1}^k$ is susceptible to manipulation even with O(n) Bayesians.

- Strong homophily: Groups are totally ordered. Within-group link probability is still p_s , but between-group link probability is p_d only for the two nearest communities (and otherwise 0).
 - For simplicity, assume one island contains all of the Bayesian agents.
- For large *n*, the strong homophily model with sufficiently many communities $\{s_\ell\}_{\ell=1}^k$ is susceptible to manipulation even with O(n) Bayesians.
 - Can be shown the principal manipulates all but $O(\sqrt{n})$ DeGroot agents.

- Strong homophily: Groups are totally ordered. Within-group link probability is still p_s , but between-group link probability is p_d only for the two nearest communities (and otherwise 0).
 - For simplicity, assume one island contains all of the Bayesian agents.
- For large *n*, the strong homophily model with sufficiently many communities $\{s_\ell\}_{\ell=1}^k$ is susceptible to manipulation even with O(n) Bayesians.
 - Can be shown the principal manipulates all but $O(\sqrt{n})$ DeGroot agents.
 - The weak homophily model with the same community structure $\{s_\ell\}_{\ell=1}^k$ is impervious for O(1) Bayesians because of small log-diameter.

- Endogenize the choice of fake news intensity λ^* .
 - Reduces to idiosyncratic costs of investment ϵ_i for each agent.

- Endogenize the choice of fake news intensity λ^* .
 - Reduces to idiosyncratic costs of investment ϵ_i for each agent.
- Allow the strategic principal to send mixed messages.
 - Does not change equilibrium analysis for Bayesians, can only improve learning for mechanical DeGroots.

- Endogenize the choice of fake news intensity λ^* .
 - Reduces to idiosyncratic costs of investment ϵ_i for each agent.
- Allow the strategic principal to send mixed messages.
 - Does not change equilibrium analysis for Bayesians, can only improve learning for mechanical DeGroots.
- Allow the strategic principal to vary the intensity over time.
 - For large *T*, equivalent to the fixed intensity equal to average.

- Endogenize the choice of fake news intensity λ^* .
 - Reduces to idiosyncratic costs of investment ϵ_i for each agent.
- Allow the strategic principal to send mixed messages.
 - Does not change equilibrium analysis for Bayesians, can only improve learning for mechanical DeGroots.
- Allow the strategic principal to vary the intensity over time.
 - For large *T*, equivalent to the fixed intensity equal to average.
- More than two states, uncertainty about strategic principal's agenda.
 - Can be accommodated under a few more network knowledge assumptions.

- Endogenize the choice of fake news intensity λ^* .
 - Reduces to idiosyncratic costs of investment ϵ_i for each agent.
- Allow the strategic principal to send mixed messages.
 - Does not change equilibrium analysis for Bayesians, can only improve learning for mechanical DeGroots.
- Allow the strategic principal to vary the intensity over time.
 - For large *T*, equivalent to the fixed intensity equal to average.
- More than two states, uncertainty about strategic principal's agenda.
 - Can be accommodated under a few more network knowledge assumptions.
- Characterization of equilibrium for small T.
 - Principal may worry about reputation effects.