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Introduction

Motivation

“Vaccine hesitancy - the reluctance or refusal to vacci-
nate despite the availability of vaccines - threatens to
reverse progress made in tackling vaccine-preventable
diseases. Measles, for example, has seen a 30% in-
crease in cases globally.”

World Health Organization (WHO)
February 2019
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February 2019
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Vaccine
hesitancy

“Whereas bots that spread malware and unsolicited content dis-
seminated antivaccine messages, Russian trolls promoted discord.
Accounts masquerading as legitimate users create false equiva-
lency, eroding public consensus on vaccination.”

American Journal of Public Health
October 2018

WORLD

RUSSIAN TROLLS PROMOTED ANTI-
VACCINATION PROPAGANDA THAT MAY
HAVE CAUSED MEASLES OUTBREAK,
RESEARCHER CLAIMS

BY CRISTINA MAZA ON 2/14/19 AT 3:52 PM EST
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@ We study the classical learning problem with unknown state of the world
y € {S,R}. Is vaccination safe (S) or risky (R)?

@ Organic news: News generation process for each agent, receive signals
sit € {S,R} correlated with the underlying state at arrival ¢.
o Fake news: Spurious process with signals unrelated to the state.
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Main Contribution

@ Question: How does learning depend on...

@ ...the sophistication and reasoning abilities of the agents?
@ ...the signals received by the agents?
o ...the underlying communication structure?

@ Assume there is a principal who interacts with the agents and may have a
specific agenda (i.e., wants them to mislearn).

o Examples: Russian propaganda, oil interests, marketing campaigns, etc.

@ When the signal structure is endogenous, can agents learn the truth?
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@ 7 agents interact in continuous-time over a finite horizon T.

@ Unknown state of the world y € {S,R} drawn once at t = 0 with common
prior q of state S.

@ Agent i's organic news generation process is Poisson with unknown intensity
A; = 0.

@ Each Poisson arrival at time ¢ provides a signal s;; with distribution
P[s;y = y] = pi > 1/2, independent over time and across agents.

@ If A; =0 agent i is oblivious - she cannot distinguish the state on her own.

@ If A; > 0 agent i is informed - she can distinguish the true state when only
organic news is received.

6/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

7/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

@ Principal chooses a message §f € {S, R} and then chooses a network strategy
x € {0,1}".

7/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

@ Principal chooses a message §f € {S, R} and then chooses a network strategy
x € {0,1}".

@ If the principal is truthful, he is committed to playing x = 0. If the principal
is strategic, he may choose any strategy he wants.

7/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

@ Principal chooses a message §f € {S, R} and then chooses a network strategy
x € {0,1}".

@ If the principal is truthful, he is committed to playing x = 0. If the principal
is strategic, he may choose any strategy he wants.

@ Principal pays an investment cost of € > 0 for every agent i influenced (i.e.,
n
c(x) = iy €1y-1).

7/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

@ Principal chooses a message §f € {S, R} and then chooses a network strategy
x € {0,1}".

@ If the principal is truthful, he is committed to playing x = 0. If the principal
is strategic, he may choose any strategy he wants.

@ Principal pays an investment cost of € > 0 for every agent i influenced (i.e.,
c(x) = Z?=1 elxi=1)'

@ Investment to influence agent i: send an independent Poisson process of
fixed intensity A* with signal s = .

7/20



Principal Setup

@ Principal has a type w either truthful (7) or strategic (S).

@ Principal chooses a message §f € {S, R} and then chooses a network strategy
x € {0,1}".

@ If the principal is truthful, he is committed to playing x = 0. If the principal
is strategic, he may choose any strategy he wants.

@ Principal pays an investment cost of € > 0 for every agent i influenced (i.e.,
c(x) = Z?=1 elxi=1)'

@ Investment to influence agent i: send an independent Poisson process of
fixed intensity A* with signal s = .

o Key assumption: Agents cannot distinguish between organic news and
principal’s fake news.
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Agent Setup

@ Agents have different reasoning abilities: either Bayesian () or DeGroot
(D).

@ Each Bayesian agent i has a neighborhood N; < {1,...,n} of friends it
observes.

@ Each DeGroot agent i is influenced by agent j's beliefs proportionally to a;;
and by its own news signals proportionally to 6;, with 0; + 2;1:1 aji = 1.

@ For every interval of length A > 0, agents exchange beliefs 77;; about the
state of the world -

@ Bayesian agents play a perfect Bayesian equilibrium against the principal
observing beliefs 77;; in their neighborhood A;.
o DeGroot agents update beliefs taking news at face value:

n
T4l = 0; - BU(newst) + Z QiTTi ¢
j=1
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Terminal Payoffs

@ At time T, agent i is forced to commit to one action 4; € {S, R}.

@ Agents want to match their action a; with the unknown state y.

@ Principal always wants agents to play a; = R, regardless of y.

Agent
R S
State y 1’11 Z b 8’(1)

Table: Terminal Game.

@ Agent's payoff uf(y,a;) and assume b e (—1,1).

o Principal's benefit given additively u?(a) = >, 1} (a;).

@ Total payoff of principal is benefit less investment: u”(a) — c(x).
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@ We say that agent i is manipulated if in equilibrium:
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Manipulation

@ We say that agent i is manipulated if in equilibrium:

(a) Her terminal action a; does not match the underlying state y when the
principal’s type is strategic.

(b) Her terminal action a; does match the underlying state y when the principal’s
type is truthful.

@ We refer to the collection of neighborhoods {\;}ic and weights (0, A) as
the network structure.

@ We say the network is impervious to manipulation if no agent is
manipulated, and otherwise susceptible.

@ By Jadbabaie et al (2012): under standard network connectedness
assumptions, all agents learn the true state y for large T.

@ What if the principal is strategic and T — o07?
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General Results

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists p* < 1 such that
if there is one informed agent with p; > p*, no Bayesian agent is manipulated.
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General Results

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists p* < 1 such that
if there is one informed agent with p; > p*, no Bayesian agent is manipulated.

@ Need for “experts” as in Acemoglu et al (2011); otherwise may be profitable
to invest x = 1 when € is small and fool the entire community.

@ Note the “expert” need not be a Bayesian, and it is even possible all
Bayesian agents be oblivious (i.e., receive no news themselves)!
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DeGroot Learning

@ Bayesian agents are eventually stubborn agents with accurate beliefs (i.e.,
mti(y) =1 for all i € B).
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DeGroot Learning

@ Bayesian agents are eventually stubborn agents with accurate beliefs (i.e.,
mti(y) =1 for all i € B).

@ If A; > A*/(2p; — 1), DeGroot agent i is a specialist and otherwise she is
amenable.

@ Specialist agents are discerning of the true state from their own news
regardless of the presence of fake news.

@ Amenable agents have little precision in their signal distribution, so if x; =0
the news appears as state y, but if x; = 1 it appears as the opposite state.

@ Limit beliefs of DeGroots can be characterized by:
m(y) = (1-A)7(0©7)

where 7; = 1 if agent i is either Bayesian, a specialist, or x; = 0.
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General Results

Sufficiency for Imperviousness

@ Let P; be the set of paths between agents i and j in the network.
ij J

@ We can define the log-diameter of the network G to be:

dg = maxpmin Z —log,, (k)
ij€D Py€P; (k—0)eP;

where we “skip” over Bayesian agents in the path summation.
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General Results

Sufficiency for Imperviousness

@ Let P; be the set of paths between agents i and j in the network.
j J

@ We can define the log-diameter of the network G to be:

dg = max min Y, —log,(ax)
ij€D Py€P; (k—0)eP;

where we “skip” over Bayesian agents in the path summation.

Theorem. (Small Log-Diameter)

For any ¢, there exists m such that if network G has log-diameter at most ¢, then
it is impervious to manipulation if there are at least m Bayesian agents.

@ Implies complete network is impervious; star network is also impervious even
if Bayesians are on the periphery.
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The Ring Network, cont.
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The Ring Network, cont.

VARNEITEE
(Notsion o

@ Need a linear number of Bayesian agents sprinkled throughout!
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Weak Homophily

@ Weak homophily model: k groups with proportion of the population
(s1,--.,5K). Within-group link probability is ps and between-group link
probability is p;.

@ Under certain regularity conditions, manipulation in random network reduces
to manipulation in expected network (see paper).

@ With communities of the same size (s; = ... = s = 1/k) the network
cannot go from impervious to susceptible if we (i) decrease ps, (i) increase
p4. or (iii) more evenly distribute the Bayesian agents. However:

o All of these can cause manipulation to increase if manipulation already exists.
@ Does not hold for communities of different sizes.

17/20



Strong Homophily

Community 1v Community 111 Community 11 Community 1

Principal

18/20



Application Networks

Strong Homophily

Community 111 Community 11 Community 1

Principal

18/20



Strong Homophily

Community 1v Community 111 Community 11 Community 1

\_Y_/

Incorrect

Principal

18/20



Strong Homophily

@ Strong homophily: Groups are totally ordered. Within-group link probability
is still ps, but between-group link probability is p; only for the two nearest
communities (and otherwise 0).

@ For simplicity, assume one island contains all of the Bayesian agents.
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Strong Homophily

@ Strong homophily: Groups are totally ordered. Within-group link probability
is still ps, but between-group link probability is p; only for the two nearest
communities (and otherwise 0).

@ For simplicity, assume one island contains all of the Bayesian agents.

@ For large n, the strong homophily model with sufficiently many communities
{Sg}’é‘:1 is susceptible to manipulation even with O(n) Bayesians.

e Can be shown the principal manipulates all but O(4/n) DeGroot agents.
@ The weak homophily model with the same community structure {Sg}’,f:1 is
impervious for O(1) Bayesians because of small log-diameter.
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Conclusion

Extensions

@ Endogenize the choice of fake news intensity A*.

o Reduces to idiosyncratic costs of investment €; for each agent.

Allow the strategic principal to send mixed messages.

@ Does not change equilibrium analysis for Bayesians, can only improve
learning for mechanical DeGroots.

Allow the strategic principal to vary the intensity over time.
o For large T, equivalent to the fixed intensity equal to average.
@ More than two states, uncertainty about strategic principal’s agenda.

@ Can be accommodated under a few more network knowledge assumptions.

Characterization of equilibrium for small T.

o Principal may worry about reputation effects.
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