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Introduction

Motivation

“Vaccine hesitancy - the reluctance or refusal to vacci-
nate despite the availability of vaccines - threatens to
reverse progress made in tackling vaccine-preventable
diseases. Measles, for example, has seen a 30% in-
crease in cases globally.”

World Health Organization (WHO)
February 2019

“Whereas bots that spread malware and unsolicited content dis-
seminated antivaccine messages, Russian trolls promoted discord.
Accounts masquerading as legitimate users create false equiva-
lency, eroding public consensus on vaccination.”

American Journal of Public Health
October 2018
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Introduction

This Talk

We study the classical learning problem with unknown state of the world
y P tS, Ru. Is vaccination safe (S) or risky (R)?

Organic news: News generation process for each agent, receive signals
si,t P tS, Ru correlated with the underlying state at arrival t.
Fake news: Spurious process with signals unrelated to the state.
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Introduction

Related Literature

Bayesian learning
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(2017), Pennycook and Rand (2018)

Propagation of fake news and misinformation
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(2010)
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Introduction

Main Contribution

Question: How does learning depend on...

...the sophistication and reasoning abilities of the agents?

...the signals received by the agents?

...the underlying communication structure?

Assume there is a principal who interacts with the agents and may have a
specific agenda (i.e., wants them to mislearn).

Examples: Russian propaganda, oil interests, marketing campaigns, etc.

When the signal structure is endogenous, can agents learn the truth?
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Model

Basic Model

n agents interact in continuous-time over a finite horizon T.

Unknown state of the world y P tS, Ru drawn once at t “ 0 with common
prior q of state S.

Agent i’s organic news generation process is Poisson with unknown intensity
λi ě 0.

Each Poisson arrival at time t provides a signal si,t with distribution
Prsi,t “ ys “ pi ą 1{2, independent over time and across agents.

If λi “ 0 agent i is oblivious - she cannot distinguish the state on her own.

If λi ą 0 agent i is informed - she can distinguish the true state when only
organic news is received.
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Model

Principal Setup

Principal has a type ω either truthful (T ) or strategic (S).

Principal chooses a message ŷ P tS, Ru and then chooses a network strategy
x P t0, 1un.

If the principal is truthful, he is committed to playing x “ 0. If the principal
is strategic, he may choose any strategy he wants.

Principal pays an investment cost of ε ą 0 for every agent i influenced (i.e.,
cpxq “

řn
i“1 ε1xi“1).

Investment to influence agent i: send an independent Poisson process of
fixed intensity λ˚ with signal s “ ŷ.

Key assumption: Agents cannot distinguish between organic news and

principal’s fake news.
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Principal chooses a message ŷ P tS, Ru and then chooses a network strategy
x P t0, 1un.

If the principal is truthful, he is committed to playing x “ 0. If the principal
is strategic, he may choose any strategy he wants.

Principal pays an investment cost of ε ą 0 for every agent i influenced (i.e.,
cpxq “

řn
i“1 ε1xi“1).

Investment to influence agent i: send an independent Poisson process of
fixed intensity λ˚ with signal s “ ŷ.
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Key assumption: Agents cannot distinguish between organic news and

principal’s fake news.

, 7/20



Model

Principal Setup

Principal has a type ω either truthful (T ) or strategic (S).
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Model

Agent Setup

Agents have different reasoning abilities: either Bayesian (B) or DeGroot
(D).

Each Bayesian agent i has a neighborhood Ni Ă t1, . . . , nu of friends it
observes.

Each DeGroot agent i is influenced by agent j’s beliefs proportionally to αij
and by its own news signals proportionally to θi, with θi `

řn
j“1 αij “ 1.

For every interval of length ∆ ą 0, agents exchange beliefs πi,t about the
state of the world y:

Bayesian agents play a perfect Bayesian equilibrium against the principal
observing beliefs πj,t in their neighborhood Ni.
DeGroot agents update beliefs taking news at face value:

πi,t`1 “ θi ¨BUpnewstq `
n

ÿ

j“1

αijπj,t
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Model

Terminal Payoffs

At time T, agent i is forced to commit to one action ai P tS, Ru.

Agents want to match their action ai with the unknown state y.

Principal always wants agents to play ai “ R, regardless of y.

Agent

R S

State y R 1, 1` b 0, 0
S 1, b 0, 1

Table: Terminal Game.

Agent’s payoff ua
i py, aiq and assume b P p´1, 1q.

Principal’s benefit given additively uppaq “
řn

i“1 up
i paiq.

Total payoff of principal is benefit less investment: uppaq ´ cpxq.
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Model

Manipulation

We say that agent i is manipulated if in equilibrium:

(a) Her terminal action ai does not match the underlying state y when the
principal’s type is strategic.

(b) Her terminal action ai does match the underlying state y when the principal’s

type is truthful.

We refer to the collection of neighborhoods tNiuiPB and weights pθ, Aq as
the network structure.

We say the network is impervious to manipulation if no agent is
manipulated, and otherwise susceptible.

By Jadbabaie et al (2012): under standard network connectedness
assumptions, all agents learn the true state y for large T.

What if the principal is strategic and T Ñ8?
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General Results

Bayesian Learning

Theorem. (Bayesian Learning)

Under standard network connectedness assumptions, there exists p˚ ă 1 such that
if there is one informed agent with pi ą p˚, no Bayesian agent is manipulated.

Need for “experts” as in Acemoglu et al (2011); otherwise may be profitable
to invest x “ 1 when ε is small and fool the entire community.

Note the “expert” need not be a Bayesian, and it is even possible all
Bayesian agents be oblivious (i.e., receive no news themselves)!
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General Results

DeGroot Learning

Bayesian agents are eventually stubborn agents with accurate beliefs (i.e.,
πipyq “ 1 for all i P B).

If λi ą λ˚{p2pi ´ 1q, DeGroot agent i is a specialist and otherwise she is
amenable.

Specialist agents are discerning of the true state from their own news
regardless of the presence of fake news.

Amenable agents have little precision in their signal distribution, so if xi “ 0
the news appears as state y, but if xi “ 1 it appears as the opposite state.

Limit beliefs of DeGroots can be characterized by:

πpyq “ pI´ Ãq´1pθb γq

where γi “ 1 if agent i is either Bayesian, a specialist, or xi “ 0.
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General Results

Sufficiency for Imperviousness

Let Pij be the set of paths between agents i and j in the network.

We can define the log-diameter of the network G to be:

dG ” max
i,jPD

min
PijPPij

ÿ

pkÑ`qPPij

´ lognpαk`q

where we “skip” over Bayesian agents in the path summation.

Theorem. (Small Log-Diameter)

For any δ, there exists m such that if network G has log-diameter at most δ, then
it is impervious to manipulation if there are at least m Bayesian agents.

Implies complete network is impervious; star network is also impervious even
if Bayesians are on the periphery.
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Application Networks

The Ring Network, cont.

Need a linear number of Bayesian agents sprinkled throughout!
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Application Networks

Weak Homophily

Weak homophily model: k groups with proportion of the population
ps1, . . . , skq. Within-group link probability is ps and between-group link
probability is pd.

Under certain regularity conditions, manipulation in random network reduces
to manipulation in expected network (see paper).

With communities of the same size ps1 “ . . . “ sk “ 1{kq the network
cannot go from impervious to susceptible if we (i) decrease ps, (ii) increase
pd, or (iii) more evenly distribute the Bayesian agents. However:

All of these can cause manipulation to increase if manipulation already exists.

Does not hold for communities of different sizes.
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Application Networks

Strong Homophily

Strong homophily: Groups are totally ordered. Within-group link probability
is still ps, but between-group link probability is pd only for the two nearest
communities (and otherwise 0).

For simplicity, assume one island contains all of the Bayesian agents.

For large n, the strong homophily model with sufficiently many communities
ts`uk

`“1 is susceptible to manipulation even with Opnq Bayesians.

Can be shown the principal manipulates all but Op
?

nq DeGroot agents.

The weak homophily model with the same community structure ts`uk
`“1 is

impervious for Op1q Bayesians because of small log-diameter.
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Conclusion

Extensions

Endogenize the choice of fake news intensity λ˚.

Reduces to idiosyncratic costs of investment εi for each agent.

Allow the strategic principal to send mixed messages.

Does not change equilibrium analysis for Bayesians, can only improve

learning for mechanical DeGroots.

Allow the strategic principal to vary the intensity over time.

For large T, equivalent to the fixed intensity equal to average.

More than two states, uncertainty about strategic principal’s agenda.

Can be accommodated under a few more network knowledge assumptions.

Characterization of equilibrium for small T.

Principal may worry about reputation effects.
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