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Introduction

Motivation

Reputation: Players come to expect certain behavior from their opponent. A
principal builds its reputation to sustain long-run relationships with
short-lived agents.

Social learning: Agents try to learn about a state of the world through: (i)
direct experience and (ii) communication with others.

Examples:

Fake news: costly to report
interesting stories which are
truthful, but want continued
patronage.

Yelp reviewers: provide

high-profile critics good

restaurant service, work less hard

for tourists.

What environments lead to manipulation?
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Introduction

This Talk

A framework to study principal-agent(s) interaction in a heterogenous
setting.

Model combines agents with different sophistication: Bayesian pBq and

DeGroot pDq.

Reputation effects are not isolated: people communicate their experiences
and beliefs.

Principal’s problem is more nuanced: network externalities from actions on

the beliefs of other agents.

Can the principal sculpt learning to his advantage?
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Introduction

Organization of the Paper

General Framework: Single patient principal playing against n agents,
arranged in a social network.

Agents have different reasoning abilities: DeGroot or Bayesian.
Formal definition of manipulation, study long-term beliefs and asymptotic
learning.

General results can be used to study any interactions of this form.

Social Contract Game: Consider a canonical reputation game.

How does the distribution of agent types and network structure affect
whether the principal can manipulate?

Consider both deterministic and random network topologies, including the

effects of homophily on manipulation.
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Model

General Game

Time is discrete: t “ 1, 2, . . .

Each agent i has a set of actions Aa
i and plays some strategy from

Sa
i “ ∆pAa

i q at every time t.

Principal has a finite set of actions Ap
i and must play a time-invariant

strategy from Sp
i “ ∆pAp

i q for every agent i.

Payoff of the agent is ua
i : Ap

i ˆAa
i Ñ R and payoff for the principal is

up
i : Ap

i ˆAa
i Ñ R for the principal, with up “

řn
i“1 up

i .

Each agent i observes perfectly the action taken by the principal at i (i.e.,
ap

i,t) but does not observe any other actions.
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Model

Reputation Setup

Finite set of principal types Ω “ tω̃u Y Ω̂.

ω̃: a strategic principal
ω̂ P Ω̂: a commitment type which plays some mixed strategy from
Sp ”

Śn
i“1 Sp

i for all t.
µ P ∆pΩq: initial distribution over the type of the principal; full support over

commitment types.

Bayesian agents are aware that the principal may be strategic.

DeGroot agents are mechanical agents who do not anticipate the principal
being strategic.

Assume there is another commitment type ω̂1, which may or may not be the
strategy played by the strategic principal in equilibrium.

Call this a DeGroot conjecture about the play of the “strategic” type.
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Model

Learning Process

DeGroot agents: Beliefs about the type of the principal evolve using
common learning heuristic, plus a personal-experience term:

πi,t`1 “ θigipa
p
i,t, πi,tq `

n
ÿ

i“1

αijπj,t

where θi `
řn

j“1 αij “ 1.

πi,t: the belief of agent i at time t.
θi P p0, 1q - weight on one’s own experience.
gi : pAp

i , ∆pΩDqq Ñ ∆pΩDq - function mapping the action of the principal to
a belief of the type.

αij: the influence of agent j’s opinion on agent i.

Bayesian agents: neighborhood Ni of agents in the network. Observe both
the private history of play at oneself, Hi,t´1, and the beliefs in the
neighborhood for all τ ď t´ 1, Πi,t.

Belief updated via Bayes’ rule conditioning on both Hi,t´1 and Πi,t.
Assume that Bayesians report beliefs truthfully.
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Model

Information Structure

Principal knows:

Network structure
Who is DeGroot and who is Bayesian

Actions played by all the agents in the network at each time t (maybe)

Bayesian agent i knows:

Network structure
Who is DeGroot and who is Bayesian
Action played by the principal at i at every time t
Beliefs in neighborhood at every time t

DeGroot agent i knows:

Action played by the principal at i at every time t
Beliefs in neighborhood (i.e., tj : αij ą 0u) at every time t
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Model

Strategies

Principal and agent each choose strategies as follows:

Principal: A map σp : Ω Ñ Sp such that σppω̂q “ ω̂ for all ω̂ (i.e.,
commitment types required to play committed strategy).
DeGroot agents: A map σa

i,t : ∆pΩDq Ñ Sa
i .

Bayesian agents: A map σa
i,t : Hi,t´1 ˆΠi,t Ñ pSa

i , πi,tq.

The principal maximizes the discounted payoff for 0 ă δ ă 1:

πppσq “ p1´ δqE
8
ÿ

t“0

δtuppap
t , aa

t q

as δ Ñ 1.

Each agent is myopic:
πa

i pσq “ Eua
i pa

p
i,t, aa

i,tq
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Model

An Illustration
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Model

Manipulation

For agent i, let BRipσ
pq be the set of best-response strategies σa

i,t to σp.

Agent i is manipulated at time t if the following two conditions hold:

1 Not a Best-Response: σa
i,t R BRipσ

p
i pωqq.

2 Principal Benefits: up
i pσ

a
i,t, σppωqq ą supσ̄a

i,tPBRipσ
p
i pωqq

up
i pσ̄

a
i,t, σppωqq

Agent is manipulated in the network game if she is manipulated at times
ttτu

8
τ“1 for some unbounded sequence.

Definition. (Manipulation)

We say that the network is susceptible to manipulation if in some equilibrium of
the network game, for all DeGroot conjectures pω̂1), there exists an agent who is
manipulated. We say the network is impervious to manipulation if in every
equilibrium of the network game, there exist DeGroot conjectures such that no
agent is manipulated.
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General Results

Manipulation: Bayesians and DeGroots

The network of all Bayesian agents: with “well-behaved” payoffs and
best-responses, there is no manipulation. Equivalent to n isolated reputation
games with a few caveats:

Asymptotic learning is the same, but short-run learning dynamics are
different with network.

Larger set of equilibria with network: principal can be held below sum of

lower repuation payoffs.

The network of all DeGroot agents: generally, there is always manipulation
except when θi is large and gi is relatively sophisticated.

For example, if θi “ 1 and gi is a Bayesian update, then the agent will learn

the true type of the principal and play a best-response.

Most interesting case: mixed-learning environment.
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General Results

Asymptotic Bayesian Learning

For any σppω̃q and type space Ω, in equilibrium, consider the following
learning properties (*):

1 If σppω̃q ‰ ω̂ for any ω̂, then for all Bayesian agents i,
limtÑ8 πi,tpω̃q

a.s.
Ñ 1.

2 If σppω̃q “ ω̂ for some ω̂, then for all Bayesian agents i,
limtÑ8 πi,tpω̃q ` πi,tpω̂q

a.s.
Ñ 1.

Theorem 1. (Bayesian Learning)

Under some regularity conditions, for generic networks A ” tαiju
n
i,j“1 and

experience-functions g, the asymptotic learning properties (*) hold.

Even if σ
p
i “ ω̂i for every Bayesian agent i (i.e., the Bayesians cannot

differentiate the types based on on their observations), the Bayesians can
deduce the true type of the principal by communicating with the DeGroot
agents.
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General Results

Asymptotic DeGroot Learning

Assume gi maps actions into beliefs. Then write the evolution of beliefs as:

πt`1pωq “ Aπtpωq ` gpσppωqq b θ

where the matrix A is given by:

A “

ˆ

0 0
AD,B AD,D

˙

Let ω˚ be the true type of the principal and πB
8pω|ω

˚q be the belief of
type ω conditional on true type ω˚. Then:

gpσppωqq „
´

πB
8pω|ω

˚q11
|B|, g1pa

p
1q, g2pa

p
2q, . . . , g|D|pa

p
|D|q

¯1

θ “ p1|B|, θ1, θ2, . . . , θ|D|q
1

Bayesian agents act as stubborn agents who “know” the true type of the
principal.

Related to literature: Acemoglu et al (2013), Yildiz et al (2013)
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General Results

Asymptotic DeGroot Learning, cont.

Assume that we restrict the possible strategies of the principal to pure
strategies:

1 Equilibria easiest to analyze: how are beliefs of principal type confounded by
the learning process?

2 Even when the principal must commit upfront (i.e., invest in a technology

and use this throughout the entire horizon), manipulation may still be

possible.

Proposition 1. (DeGroot Learning)

Under certain regularity conditions, if σp is a pure strategy, as t Ñ8, the beliefs
of the DeGroot agents about the type of the principal converge almost surely:

πD,8
a.s.
Ñ pI´Aq´1pgpσpq b θq

Agents are learning a state which can be strategically set by a principal.
Principal knows how limit beliefs are induced by the strategy σp employed.
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Deterministic Networks

Social Contract Game

Static NE: Agent plays Opt Out w.p. 1 and principal plays Bad w.p. at
least 1{p1` εq. Pareto sub-optimal.

Single commitment type ω̂ which plays Good always; prior probability
ζ ą 0. Type space of the principal pω̂, ω̃q.

Reputation equilibria: Grim Trigger, Lagged Best-Response, etc.

Experience function gipGoodq “ p1, 0q and gipBadq “ p0, 1q for all
DeGroots.

Characterization of equilibria as ζ Ñ 0.
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Deterministic Networks

Example: The Ring Network

Assume the first m “ opnq agents along the ring are Bayesian; everyone else is
DeGroot with θi “ 1{pn` 1q.

Proposition 2. (Ring Manipulation)

There exists a number D such that for any 0 ă ε ă pe´ 1q, the ring
network with d ą D DeGroot agents and any number of Bayesian agents is
susceptible, and the fraction of manipulated agents is no less than
1´ logp1` eε{p1` εqq.
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Deterministic Networks

Proof Idea

Consider a heuristic for the principal’s strategy: play Good for τ DeGroot
agents closest to the Bayesians, then switch to Bad for the remaining
DeGroots.

This gives a lower bound on the number of manipulated agents in
equilibrium; no claim that this heuristic is optimal!

Heuristic Idea: Those closest to the Bayesians have stronger beliefs about

the principal’s true type, whereas those farther away tend to believe

commitment type because positive experiences drown out Bayesian opinions.

Need πi,8pω̂q ą ε{p1` εq to ensure that switching to Bad does not induce
the agent to switch to Opt Out:

τ˚pn, εq “ inf

#

τ :
„

n
n` 1

´

ˆ

n
n` 1

˙τ

¨

ˆ

n
n` 1

˙n´m´τ

ą
ε

1` ε

+

which for n large, τ˚pn, εq « n logp1` eε{p1` εqq.
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Deterministic Networks

Imperviousness in the Ring

Proposition 2. (Ring Imperviousness)

For any 0 ă ε ă pe´ 1q, in the ring Ωpnq optimally-placed Bayesians are
needed for imperviousness.

A linear number of Bayesian agents are needed and their location is of
critical importance.
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Deterministic Networks

DeGroot Centrality

How do we characterize imperviousness in general networks?

Belief of a given DeGroot agent is related to its centrality to other DeGroot
agents who are having positive experiences.

Generalize Katz-Bonacich centrality to account for node-dependent discount

factors which depend on the principal’s strategy σp.

For slack parameter γ, define the characteristic vector to be:

ξpγq “

ˆ

0m
θb γ

˙

Then, we have DeGroot centrality given by:

Dpγq ” pI´Aq´1ξpγq

For ζ Ñ 0, DeGroot centrality is equal to πi,8pω̂q for DeGroot agents.
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Deterministic Networks

Weighted Walk Interpretation

Most useful to think about DeGroot centrality in terms of weighted walks:

Define the weight of a walk W “ i Ñ v1 Ñ v2 Ñ . . . Ñ vn Ñ j to be:

wW “
ź

viÑvi`1

αvi,vi`1

If Wij is the set of all walks between i and j not passing through a Bayesian,
then:

rpI´Aq´1sij “
ÿ

WPWij

wW ă 8

Main proof technique: bound weighted walks in order to bound DeGroot
centrality instead of matrix inversion (only possible in symmetric networks
e.g., ring or complete).

Setting θ “ p1´ βq1 and γ “ 1 recovers β-Bonacich centrality, so DeGroot
centrality is a generalization.
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Deterministic Networks

The General Principal’s Problem

Let us denote by χpγq:

χipγq “ 1´
´

1´ 1Dipγqąε{p1`εq

¯´

1´ 1Dipγq“Dip1q

¯

Theorem 2.

For any ε ą 0, the principal solves:

Γ˚ “ arg max
γPt0,1u|D|

ÿ

iPD

r1` εp1´ γiqsχipγq

The network is impervious if 1 P Γ˚; otherwise it is susceptible.

Some easy sufficiency conditions from Theorem 2:

Imperviousness: Dip1´iq ă ε{p1` εq for every DeGroot i.
Susceptible: there exists DeGroot i such that Djp1´iq ą ε{p1` εq for all

DeGroots j (including i).
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Deterministic Networks

Personal Experience and Societal Norms

Network Preservation: Form pA1, θ1q from pA, θq without changing network
structure: α1ij “ αijp1´ θ1iq{p1´ θiq for all DeGroot agents i.

Can interpret θ as a cultural parameter: how much emphasis is placed on
one’s own interactions vs. the “consensus” of society?

How does manipulation change as we change θ, under network preservations?

When θ “ θ1 (i.e., homogenous society), there are thresholds
0 ă θ ă θ ă 1:

Sheep (θ ă θ): no manipulation as long as there is at least one
Bayesian.
Narcissist (θ ą θ): no manipulation - each agent plays an isolated game
Reasonable People (θ ă θ ă θ): the network is susceptible - subset of
DeGroot agents get Good to build reputation, whereas another subset
get Bad.

However, when the experience weights in the network are heterogenous, then
most sheepish agents also get manipulated.
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Random Networks

Random Networks: Motivation

Practitioners often fit real-world data to a random network model:
Erdos-Renyi, configuration model, stochastic-block network, scale-free
network, etc.

Can we analyze whether certain random networks are impervious or
susceptible to manipulation?

Example: complete network is unrealistic - every agent talks to every other
agent. But does Erdos-Renyi random network resemble the properties of the
complete network because they are equivalent ex-ante?

Goal: does the expected network say anything about realized network in
terms of manipulation?
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Random Networks

Random Networks: Setup

Take as given the symmetric matrix of link probabilities:

ρ̄n “

¨

˚

˚

˝

p11pnq p12pnq . . . p1npnq
p21pnq p22pnq . . . p2npnq

. . . . . . . . . . . .
pn1pnq pn2pnq . . . pnnpnq

˛

‹

‹

‚

Links are undirected: if i is linked to j, then j is linked to i as well.

Links are formed independently of each other, given the probability in ρ̄n.

Assume that θpnq is given as a function of n and uniformly bounded away
from 1.

The random network Ãn is formed:

α̃
pnq
ij “

#

p1´ θ
pnq
i q{dpnqi , if there is a link j Ñ i

0, otherwise

where dpnqi is the degree of agent i.
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Random Networks

Random Networks Theory: Conditions

Want to analyze the “expected” network Ān instead, given by

ᾱ
pnq
ij “ p1´ θ

pnq
i qpijpnq{d̄

pnq
i . What conditions must we impose?

Related to the conditions in Dasaratha (2019), but slightly more complex

because: (i) stubborn Bayesian agents and (ii) normalized adjacency (i.e.,

“random walk”) matrix.

Non-vanishing spectral gap: The DeGroot-DeGroot submatrix of ρ̄nD̄´1
n

must have its second eigenvalue bounded away from its largest eigenvalue.

Large expected degrees: All agents i have limnÑ8 d̄pnqi { log n “ 8.

Normal society: All θ’s are grow/decay asymptotically at the same rate: for

some ν, lim supnÑ8 θ
pnq
i {θ

pnq
j ď ν for any DeGroots i, j.

Recall that in the heterogenous θ populations, the most sheepish agents get

manipulated; in non-normal societies this applies too. The least trivial case is

therefore when this assumption holds.
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Random Networks

Random Networks Theory: Main Result

Theorem 3. (Random Networks)

Suppose that a sequence of ρ̄n has a non-vanishing spectral gap and
satisfies the expected-degree condition; also let θ be a normal society. For
almost all ε, the random network Ãn is impervious (resp. susceptible) if
and only if Ān is impervious (resp. susceptible) with high probability.

Three key steps in the proof:

Step 1: Show that for any ψ ą 0, limnÑ8P
”

||ρ̃nD̃´1
n ´ ρ̄nD̄´1

n ||2 ě ψ
ı

“ 0;

that is, the norm of the difference between realized and expected RW
matrices is small with high probability (expected-degrees condition).
Step 2: For any slacks γn, we have that ||Dpγnq ´ErDpγnqs||2 is also small
with high probability (normal society condition).

Step 3: Show that DeGroot network is connected with high probability, and

so the set of optimal γ is the same under the realized and expected networks

with high probability: Γ̃
˚
“ Γ̄

˚
(non-vanishing spectral gap).
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Random Networks

Application: Weak Homophily with Two Islands

Weak homophily model: k groups with proportion of the population n:
ps1, . . . , skq. Within-group link probability is ps and between-group link
probability is pd.

With two communities of the same size ps1 “ s2 “ 1{2q:
Decreasing ps may lead to more manipulation, but increasing ps never does.
Increasing pd may lead to more manipulation, but decreasing pd never does.

If there are m Bayesian agents, then m1 “ m2 “ m{2 is worst distribution.
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Random Networks

Optimal Seeding

Problem: If one can endow a limited number of agents with Bayesian
abilities (e.g., by educating them), which do you select?

Ring Network: Clustered Bayesians is the worst-case, need to sprinkle them
throughout the ring to get imperviousness.

Weak Homophily with Two Islands: Evenly distributed Bayesians across
both islands does the worst - better to concentrate them on a single island.

Tradeoff between minimizing the DeGroot diameter of the network (like the
ring) and having many DeGroot agents with beliefs close to the truth (like
the weak homophily).
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Random Networks

Application: Weak Homophily Imperviousness

Proposition 7. (Weak Homophily)

Fix pps, pdq. There exists β ą 1 such that as n Ñ8, if there are
m “ Opε´1pβ´ ps ` pdq

´1q Bayesian agents anywhere, then any weak homophily
network with communities ts`uk

`“1 is impervious with high probability. In
particular, if the number of Bayesian agents grows unboundedly with n, any weak
homophily network is impervious for any ε, with high probability.
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Random Networks

Application: Strong Homophily

Strong homophily: Each community has a quality score λj P R. Within-group link
probability is still ps, but between-group link probability is pd only for the two
nearest communities (and otherwise 0).

Proposition 8. (Strong Homophily)

Fix pps, pdq. There exists ε ą 0 such that for every large n, there is a strongly assortative
homophily network Ãn with communities ts`uk

`“1 susceptible to manipulation with high
probability. On the other hand, the weak homophily network with the same
commnunities ts`uk

`“1 is impervious with high probability.
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Conclusion

Conclusion

Embed the classical reputation setup in a social learning environment where
agents communicate with either each other as they interact with the
principal.

The social network is heterogenous on multiple dimensions: reasoning
sophistication, network position, personal experience interpretation, etc.

Principal can sometimes exploit his reputation to increase payoffs, but
depends on network structure, the learning mechanisms employed by the
agents, and societal norms.

Focus of DeGroot learning is how badly it can perform (in worst-case)
relative to information aggregation benchmark.

Principal is not an adversary: understand how bad learning is when the

principal strategically chooses underlying state.

Main prescription: focus should be on increasing communication between
groups who do not normally communicate; this is more critical than
improving the sophistication of many agents.
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Conclusion

Future Work

What happens when Bayesian agents are also strategic in their
communications?

For example, add an action for the principal Super Good which is costly but

gives a high payoff to the agent. Principal plays this conditional on the

Bayesian spreading positive beliefs about the reputation of the principal

(instead of truth).

Allow the principal to play mixed strategies and/or time-varying strategies:
can only lead to more manipulation.

Main challenge in the former is that DeGroot beliefs follow a weird limiting
distribution and beliefs are network correlated based on recent realizations of
the mixed strategy.

Conjecture the latter reduces to time-invariance when allowed to play

correlated mixed strategies (i.e., convex hulls are the same), assuming the

principal does not observe the realizations of his mixed strategy.

Experimental considerations: testable hypotheses about principal-agent(s)
interactions in a social setting.
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