
Learning in a Post-Truth World

Abstract

Misinformation has emerged as a major societal challenge in the wake of the 2016 U.S. elec-
tions, Brexit, and the COVID-19 pandemic. One of the most active areas of inquiry into misin-
formation examines how the cognitive sophistication of people impacts their ability to fall for
misleading content. In this paper, we capture sophistication by studying how misinformation
affects the two canonical models of the social learning literature: sophisticated (Bayesian)
and naive (DeGroot) learning. We show that sophisticated agents can be more likely to fall
for misinformation. Our model helps explain several experimental and empirical facts from
cognitive science, psychology, and the social sciences. It also shows that the intuitions de-
veloped in a vast social learning literature should be approached with caution when making
policy decisions in the presence of misinformation. We conclude by discussing the relation-
ship between misinformation and increased partisanship, and provide an example of how
our model can inform the actions of policymakers trying to contain the spread of misinfor-
mation.

1 Introduction

Misinformation has become an inextricable component of how people learn about the world

and make decisions. Persistent disagreement over objective facts is becoming increasingly com-

monplace (Alesina et al., 2020; Bursztyn et al., 2020), leading to the assertion that we currently

live in a post-truth, “alternative facts” world (McIntyre, 2018). This makes it particularly difficult

when society faces a collective action problem whose outcome depends on a substantial pro-

portion of the population agreeing to take a specific action, e.g., vaccination or wearing a mask.

Indeed, Loomba et al. (2021) show that in the U.S. and U.K., an average decline of 6.2 percentage

points in the acceptance of the COVID-19 vaccine is directly attributable to misinformation.

What makes people believe false claims? A growing empirical and experimental literature

argues that it depends on their cognitive sophistication.1 Pennycook and Rand (2018) show that

more sophisticated agents are less likely to fall for misinformation. At the same time, there is

1From Tappin et al. (2020): “indicators of cognitive sophistication [can include] educational attainment, science
literacy, numeracy, specific topic knowledge, and a propensity for analytic thinking.” This is also correlated with
performance on the Cognitive Reflection Test (Pennycook and Rand, 2018). Pennycook et al. (2021) show that getting
people to think more carefully about the accuracy of the news they read can lead to better discernment of false
information.
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ample evidence that sophisticated agents are more likely to disagree over objective facts.2 This

presents an interesting puzzle: if sophisticated agents are more likely to learn the truth, then

why do we observe more disagreement within that group over what the truth is? Competing

explanations argue that this disagreement arises from political polarization and partisan bias

(e.g., Taber and Lodge (2006); Taber et al. (2009); Kahan et al. (2017)), or can simply be explained

as an outcome of unbiased Bayesian reasoning (e.g., the recent experiments in Tappin et al.

(2020)).

In this paper, we present a simple model that helps explain and reconcile the above empirical

findings. These findings cannot be explained using classic social learning results, which until

recently,3 were developed under the assumption that agents learn from organic news that can be

inaccurate but contains no deliberate misinformation. Our results depart from the conventional

wisdom of social learning and economic modeling in general — that the rational economic agent

is the standard against which all agent models should be measured.4 Our model therefore serves

as a foundation for further theoretical and experimental work that integrates misinformation

into social learning, and can also be used to inform policy decisions on these issues.

We capture sophistication heterogeneity by studying how misinformation affects the two

canonical models of the social learning literature: Bayesian (e.g., Acemoglu et al. (2011, 2014))

and naive (DeGroot) learning (e.g., Golub and Jackson (2010)). In these models, agents try to

uncover an underlying state of the world, e.g., whether a vaccine is safe or not, and do so by

learning from news they receive as well as by exchanging opinions with each other. Bayesian

agents employ their sophisticated reasoning abilities before they accept a piece of news as fac-

tual, whereas DeGroot agents simply aggregate the information they receive into their beliefs

without much deliberation. In the presence of misinformation, which of these two agent types

is more likely to mislearn?

Theorem 1 answers this question (and reconciles the empirical literature) by allowing us to

think about learning as a function of agent sophistication and the amount of misinformation in

the system. When there is little or no misinformation, we recover the classic result that sophisti-

cated agents learn better than naive ones.5 As the amount of misinformation increases, we enter

2This relationship between increased cognitive sophistication and disagreement is widely documented across
multiple issues; see for example Drummond and Fischhoff (2017); Kahan et al. (2012); Hamilton et al. (2015).

3For recent work that incorporates misinformation into the study of learning and how it impacts beliefs of the
true state, see Allon et al. (2019); Mostagir et al. (2021); Mostagir and Siderius (2021); for work that studies how misin-
formation impacts platform design and/or the strategic sharing aspect of misinformation (but not how misinforma-
tion impacts beliefs of the true state), see Candogan and Drakopoulos (2020); Papanastasiou (2020); Acemoglu et al.
(2021).

4For a recent example in a social learning context, Dasaratha et al. (2020) measure how well naive learning per-
forms by comparing it to the Bayesian benchmark.

5This agrees with the hypothesis that more sophisticated agents are more likely to learn in the presence of misin-
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a relatively unexplored territory where naive agents outperform sophisticated agents, who can

no longer agree on what the true state is.6 This result is slightly ironic given that the interest in

studying DeGroot agents stems from the critique that Bayesian agents possess reasoning abil-

ities that are unrealistic to demand of the average person. Theorem 1 shows that this learning

superiority falls apart once there is enough misinformation in the system.

Underlying these diverging outcomes is the fact that the role of misinformation extends be-

yond corrupting the news that agents receive. For the Bayesians agents, the mere knowledge

that there is misinformation in the system allows them to spin narratives that justify their ex-

isting positions. A post-truth world emerges where the presence of evidence to the contrary of

one’s beliefs is rationally dismissed as misinformation, and learning is hampered as a result.

This is not the case for the DeGroots, who simply include any new information into their beliefs

without worrying about its accuracy. This makes them vulnerable to misleading information,

but they also benefit from not being paranoid about whether every piece of information is cor-

rect or not. This “openness” can allow them to learn better than the Bayesians, who develop a

form of endogenous stubbornness that stops them from learning. As a result, increased sophisti-

cation can lead to less learning and more disagreement as agents “dig in their heels” and refuse

to move from their existing positions.

We remark that the above result is similar to the findings of Tappin et al. (2020), which suggest

that sophisticated agents disagree as a result of unbiased Bayesian behavior and not partisan

bias. Our model allows us to comment more broadly on the polarization debate (see Osmund-

sen et al. (2020); Tappin et al. (2020)): does an increase in polarization and partisan bias lead

to more disagreement over objective facts? Theorem 3 shows that in the presence of enough

misinformation, an increase in polarization breaks down Bayesian learning, but can leave De-

Groot learning unaffected and in some cases even make these simpler agents better off. This

means that studies that measure the impact of polarization on susceptibility to misinformation

should account for agent sophistication and the amount of misinformation in the system, oth-

erwise they risk leaving out important confounding factors. This extends to policies that target

specific agents in the population (for example, through educational outreach) in order to stop

misinformation. Proposition 3 shows that the question of whom to target has different answers

depending on the sophistication level of society: a planner should target agents with moderate

beliefs in a DeGroot society, but focus her efforts on the extremists in a Bayesian one.

formation, as documented empirically in Bronstein et al. (2019); Bago et al. (2020); Pennycook and Rand (2018) and
a wealth of other literature.

6This in turn is consistent with the empirical findings that more sophisticated agents are more likely to disagree,
as shown in Drummond and Fischhoff (2017); Kahan et al. (2012); Hamilton et al. (2015).
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2 Model

There is a true and unknown state of the world θ ∈ {L,R} indicating whether a left-leaning or

right-leaning idea is correct. There are N agents in the population who are trying to learn θ to

make an informed binary decision. Agents receive independent information (messages) about

θ and then interact with others to try and learn what the true value of θ is.

Timing. We present our model using a parsimonious three-period model t = 0, 1, 2:

(i) At t = 0, agents start out with heterogeneous ideological beliefs. The initial belief, πi,0, of

each agent i is drawn i.i.d. from a continuous distribution H , corresponding to her belief

in θ = R. Agents with beliefs πi,0 < 1/2 are (initially) left-leaning, while those with beliefs

πi,0 > 1/2 are (initially) right-leaning.

(ii) At t = 1, agents receive (independent) messages advocating for either state L or state R.

Formally, each agent i receives a single message mi ∈ {L,R}.7 Some of the messages come

from organic news, which are correlated with the state; in particular, P[mi = θ] = p > 1/2

for every agent i. We assume throughout that the population N is large (i.e., N → ∞) so

that in the presence of organic news only, the truth is discernible with high probability by

aggregating all of the messages.8

The messages that agents receive could also be misinformation that is orthogonal to the

state. Agents cannot discern whether a given message contains misinformation or not. The

probability that a message contains misinformation is q < 1/2, i.e., most news is organic.

Agents are aware of the existence of misinformation (they know q), but do not know how

this misinformation is broken down along the two possible states, i.e., they do not know the

proportion of misinformation arguing for L vs. the proportion of misinformation arguing

forR. This follows the empirical observation in van der Linden et al. (2020) that shows that

while people agree about the existence of misinformation and even its extent, they do not

agree on whether this misinformation leans more left or right.

Let r denote the proportion of misinformation on the right. We assume that r is drawn from

a differentiable distribution r ∼ F (·) at t = 0 and is independent of θ. We assume thatF has

7Receiving a single message is without loss of generality. Appendix B.4 considers a generalization where agents
get multiple (independent) messages over time, but our results apply identically.

8In Appendix B.5.2, we measure the sensitivity of our results to this assumption via simulations with finite N
populations.
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full support9 on some interval [r, r̄] and no support10 outside of this interval.11 Similarly, we

assume the distribution of prior beliefsH has full support over [π, π̄] and no support outside

of it. In other words, we assume the supports of all distributions are convex.

(iii) At t = 2, agents observe the broadcasted beliefs of other agents in periods t = 0 and t = 1

and use these beliefs (as well as their own message) to form a final belief πi,2 (as described

below). Following this, each agent i makes a binary decision ai ∈ {L,R} based on which

state she believes is more likely.

We consider two types of populations: Bayesian and DeGroot. Bayesian agents learn about

θ by updating their beliefs in a fully Bayesian way, whereas DeGroots use simple learning heuris-

tics. We use 1θ=R to denote the indicator function of θ = R (i.e., 1θ=R is equal to 1 when θ = R

and 0 when θ = L). Recall πi,0, πi,1, and πi,2 are the beliefs of agent i at times t = 0, 1, and 2,

respectively.

(i) Bayesian Society: At t = 1, each Bayesian agent forms a posterior update about the state,

πi,1, given the article with message mi and knowing content may contain misinformation:

πi,1(mi = R) = E[1θ=R|mi = R] =

∫ 1

0

(p(1− q) + qr)πi,0
p(1− q)πi,0 + (1− p)(1− q)(1− πi,0) + qr

f(r) dr

πi,1(mi = L) = E[1θ=R|mi = L] =

∫ 1

0

((1− p)(1− q) + q(1− r))πi,0
(1− p)(1− q)πi,0 + p(1− q)(1− πi,0) + q(1− r)

f(r) dr

At time t = 2, agents form Bayesian posterior estimates about the state, πi,2, given their

article with message mi and the beliefs of agents in the population {πj,0, πj,1}j 6=i, again,

fully aware that there may be misinformation in the system. This is akin to the updating

process in Acemoglu et al. (2016), where agents are uncertain about the underlying message

distribution.

(ii) DeGroot Society: DeGroot agents are boundedly rational agents who use a learning heuris-

tic to learn θ. At t = 1, each DeGroot agent updates her belief of the state using Bayes’ rule

taking the news at face value (i.e., assuming there is no misinformation in the system). This

is similar to how these agents update their beliefs in Jadbabaie et al. (2012)):

πi,1(mi = R) = E[1θ=R|mi = R, q = 0] =
pπi,0

pπi,0 + (1− p)(1− πi,0)
(1)

9We define full support of a distributionG on an interval [a, b] as having its density g satisfy the following property:
there exists µ > 0 such that g(α) > µ for all α ∈ [a, b].

10No support over a setAmeans the distribution G draws an element fromAwith probability 0.
11While this does not rule out full support of F on [0, 1], this more general assumption allows us to capture the

effect of relatively symmetric vs asymmetric prevalence of misinformation.
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πi,1(mi = L) = E[1θ=R|mi = L, q = 0] =
(1− p)πi,0

(1− p)πi,0 + p(1− πi,0)
(2)

Based on these observations, each DeGroot takes an average of all the time t = 1 beliefs of

the agents in society to form their time t = 2 belief, i.e., πi,2 = 1
N

∑N
j=1 πj,1. In other words,

DeGroot agents employ “rule-of-thumb” learning to update their beliefs instead of forming

a Bayesian posterior belief.

Learning. At t = 2, agent i chooses a binary terminal action ai ∈ {L,R} that minimizes her

quadratic loss E[(ai − 1θ=R)2] given her belief, πi,2. We follow the standard definition of learning

(e.g., Acemoglu et al. (2011)) and say that society learns if all agents take the correct action (ai =

θ); otherwise, society mislearns. In Appendix B.5.1, we explore how our results are affected when

characterizing the expected proportion of agents who (mis)learn instead of the classical “all-or-

nothing” measure of (mis)learning.

Remark — While we adopt the three-period learning model to most transparently demonstrate

the main concepts, richer learning dynamics can be supported without compromising any of

the key results. In particular, when agents learn from each others’ beliefs over a social network

(and thus do not observe all beliefs in the population), our findings generalize, provided there

is a longer learning horizon and given some mild assumptions on the network structure. The

details of the reduction from more general networked learning to the three-period model are

supplied in Appendix B.4.

3 Illustrative Example

We present an example to show that agents who use simple learning heuristics can learn better

than fully-rational agents in the presence of misinformation. For concreteness, we fix θ = L as

the true state (which, by assumption, is unknown to the agents). We also assume the misinfor-

mation ideological split r is uniformly distributed on [0, 1], i.e., the split is ex-ante symmetric

for left-leaning and right-leaning misinformation. Agents do not know the exact value of r, but

they know that it comes from the uniform distribution on (0, 1). We compare the following two

settings:

Setting A: Weak Organic Messages and No Misinformation. Consider the baseline case studied

throughout the social learning literature. There is no misinformation, i.e., q = 0, and p = 0.54, so

that 54% of organic messages align with θ = L. In this setup, organic news is (weakly) correlated

with the truth.
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Do agents learn the correct state (almost surely) when the population is large? The short

answer, as already developed in a vast literature, is yes. Both agent types correctly learn that

the true state is L. This happens regardless of their initial prior beliefs (i.e., even those on the

extreme right still learn that the correct state is L) and despite the fact that news is weakly corre-

lated with θ. In this setup, both the Bayesian and DeGroot societies take the correct action.

Setting B: Misinformation with Stronger Organic Messages. In this setting, misinformation

exists in the system, with q = 0.25. On the other hand, organic news is of higher quality, with

p = 0.6. For this example, assume that r = 0.64, i.e., 64% of the misinformation advocates for

θ = R and 36% advocates for θ = L. This means that among the large collection of messages

{mi}Nj=1, roughly 54% correspond to L (i.e., p(1 − q) + (1 − r)q) and 46% correspond to R (i.e.,

(1 − p)(1 − q) + qr). This distribution is identical to the one in Setting A, under which agents

were able to correctly learn. In Setting B, if agents did not know misinformation exists, learning

will proceed exactly as before and everyone will take the correct action despite the presence of

misinformation. However, agents are now aware that there is misinformation in the system.

Given this, we analyze how each society updates its beliefs.

Bayesian agents: Agents observe the initial beliefs πj,0. At t = 1, each Bayesian agent i forms

a posterior belief πi,1 based on mi as mentioned in Section 2. Observe that πj,1 > πj,0 if and

only if mi = R and πj,1 < πj,0 if and only if mi = L. Thus, by observing beliefs in the second

period, every agent i can deduce the messages {mi}Nj=1. As noted, When N is large, the law of

large numbers guarantees that roughly 54% of the messages that agent i observes will favor L.

Note that there are exactly two realizations of r for which 54% of the messages are L and 46%

are R. The first is the true realization, where θ = L and r = 0.64. The other is where θ = R

but r = 0.04 (i.e., only 4% of the misinformation is on the right). This situation is depicted

in Figure 1. Because r is uniformly distributed, both of these scenarios are equally likely. This

implies that πj,2 = πj,0 because the messages provide no information about the state θ. In other

words, right-leaning agents spin a narrative that the vast majority of misinformation is on the

left, and cannot use the massive quantity of news to change their views. Similarly, left-leaning

agents do the same, believing (correctly, in their case) that most of the misinformation must be

on the right. The society of Bayesians does not learn and there is persistent disagreement about

θ in the population.

DeGroot agents: DeGroot agents take messages at face value and use them to update their beliefs

(via Equations (1) and (2)) using p = 0.6. Thus, noting that 54% of messages are L and 46% of
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Figure 1. Two narratives that give rise to equivalent observations. In this example, the true state
is L and most of the misinformation comes from the right with r = 0.64, i.e., the left narrative
is the correct one. However, agents who hold right-leaning beliefs can rationalize their observa-
tions as coming from the right narrative, with the organic information arguing forR and most of
the misinformation coming from the left, with r = 0.04.

messages are R, DeGroot agents hold beliefs πj,t for all t ≥ 2:

∫ 1

0

(
.46 · .6α

.6α+ .4(1− α)
+ .54 · .4α

.4α+ .6(1− α)

)
dα = 0.495 < 1/2

so all agents in society learn the correct state, in contrast to the Bayesians.

Likelihood of Mislearning. We used a specific misinformation split r = 0.64 in the above exam-

ple for simplicity. Other values of r would give rise to different outcomes. Instead of focusing

on a specific realization of r, we can instead look at the likelihood that society does not learn

when the split r is randomly drawn from its true (uniform, in this example) distribution. How do

Bayesian agents perform relative to DeGroot agents on average?

It turns out that in this case, Bayesian agents mislearn twice as much as DeGroots (probabil-

ity that Bayesians mislearn is 40% vs. 20% for the DeGroots – see Appendix B.1 for calculations).

We characterize this ratio as a function of the distribution of r in Theorem 2. Generally, while

Bayesian agents thrive in environments where information is organic, they are much more vul-

nerable to mislearning and taking the wrong action in the presence of misinformation.

4 Learning in Bayesian vs. DeGroot Societies

In this section, we generalize the previous example and investigate the conditions under which

learning breaks down in each society. We follow this up with two technical results. Theorem 1
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Figure 2. Two narratives that justify the same observed message distribution under a specific
misinformation split r. Agents do not know r but they know that it follows a triangular distribu-
tion. This makes them believe that the more likely narrative is the one that corresponds to the
true state being R. In this case, all agents move further to the right and away from the correct
state.

characterizes when Bayesians learn worse than DeGroots as a function of the amount of misin-

formation in the system, and Theorem 2 quantifies how much worse they learn as a function of

the distribution of that misinformation.

4.1 DeGroot (Mis)learning: Propaganda for the Incorrect State

DeGroot agents update their beliefs about the state by averaging the opinions of others. Because

of this simple updating process, they always converge to a (possibly incorrect) consensus about

what the true state is. When there is no misinformation (i.e., q = 0), agents will learn the correct

state and choose ai = θ (see Golub and Jackson (2010)). When misinformation is present, we

can provide necessary and sufficient conditions for DeGroot learning in terms of the ideological

split of misinformation r:

Proposition 1. When θ = L, there exists a threshold r∗D such that if r < r∗D, the DeGroot society

learns and if r > r∗D, the DeGroot society mislearns.

Proposition 1 shows that failure of learning depends on whether propaganda for the incor-

rect state is sufficiently high to direct agents away from the belief that the organic news argues

for. Agents learn as long as this propaganda does not overpower organic news.
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4.2 Bayesian (Mis)learning: Rationalization and Competing Narratives

Bayesian agents make inferences about the state by observing the distribution of messages in

the population. They then rationalize the values for the misinformation split r that gives rise

to this message distribution. We refer to these values as narratives. There can be at most two

narratives: one that corresponds to θ = L and one that corresponds to θ = R. Only one of these

narratives is correct, and agents will stick with the narrative that fits their beliefs.12 However,

there can also be a single correct narrative, in which case all agents learn the true state θ. This

again depends on the extent of misinformation arguing for the incorrect state:

Proposition 2. When θ = L, there exists a threshold r∗B such that if r < r∗B , a single narrative

exists and the Bayesian society learns.

If r > r∗B , then two narratives exist. Figure 2 shows this situation for a specific r > r∗B value.

Recall that agents do not know r, but in this example they know that it follows a triangular dis-

tribution. This makes them believe that the more likely narrative is the one corresponding to R.

In this case, all agents move further to the right (and away from the true state). Note that un-

like the example in Section 3, where the two competing narratives were equally likely under the

uniform distribution, the triangle distribution makes the incorrect narrative strictly more likely.

Section 4.4 shows how to quantify the likelihood of mislearning as a function of the hazard rate

of the distribution of r.

4.3 Low vs High Misinformation Regimes

Next, we present our main theorem, which analyzes the settings under which DeGroot or Bayesian

agents mislearn more often:

Theorem 1. Suppose H is symmetric about 1/2.13 Then there exists a threshold q∗ ∈ (0, 1) such

that:

(a) If q < q∗, the Bayesian society mislearns with lower probability than the DeGroot society;

(b) If q > q∗ and H and F have full support on [0, 1], the Bayesian society mislearns with strictly

higher probability than the DeGroot society.
12This is reminiscent of the effect informally described by the Today show co-host Al Roker, commenting on con-

flicting results of science experiments: “I think the way to live your life is you find the study that sounds best to you
and you go with that.”

13This corresponds to a society where every belief on the left is perfectly mirrored by a belief on the right of the same
extremity. This allows us to analyze both the θ = L and θ = R cases identically and abstracts away from scenarios
where society begins either initially biased toward or away from the correct state, in order to focus on the underlying
learning mechanisms.
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Theorem 1 establishes that when the amount of misinformation is not too large, Bayesian

agents can still learn better than their DeGroot counterparts. This is the classic intuition from the

social learning literature and the one empirically observed in Bronstein et al. (2019); Bago et al.

(2020); Pennycook and Rand (2018). On the other hand, once misinformation becomes more

rampant, DeGroot agents become more adept at aggregating the organic information compared

to the Bayesians, who find themselves in consistent disagreement over what the truth is, as in the

empirical work of Drummond and Fischhoff (2017); Kahan et al. (2012); Hamilton et al. (2015).

The intuition for Theorem 1 is as follows. When misinformation is relatively low, the organic

news is enough for Bayesians to infer the true narrative and see the misinformation as purpose-

fully deceptive. On the other hand, with DeGroot agents, this misinformation still has a chance

of successfully steering the beliefs of the population away from the truth. Once the amount

of misinformation becomes large, a post-truth effect kicks in for the Bayesians: any reasonable

narrative can be told about the source of misinformation, and disagreement over the true state

ensues. While DeGroots are not guaranteed to learn either, their simple updating tends to work

well when misinformation is not too heavily skewed in one direction or another. Thus, in more

instances, the DeGroot society is able to learn from the organic news while allowing the misin-

formation on both sides to nearly “wash out.” We can quantify how much better the DeGroots

do in this case, which is the subject of the next section.

4.4 High Misinformation and Mislearning Rates

When q > q∗, we observe in Theorem 1 that DeGroot agents learn more effectively than Bayesian

agents. This section is for readers who are interested in quantifying the extent with which De-

Groots outperform Bayesians. This depends on the misinformation split distribution F (·). We

formalize this as follows. The exact difference in rates of mislearning between Bayesian and De-

Groots in the high-misinformation regime (i.e., q > q∗) is determined by the hazard rate λF (α)

of F . Recall that the hazard rate is given by λF (α) = f(α)
1−F (α) , where f(·) is the density of cumu-

lative distribution function F . Denote by µ the the relative frequency of DeGroot to Bayesian

mislearning (which by Theorem 1 is less than 1), then we can characterize how µ changes as a

function of the strength of organic signals p (i.e., whether agents can learn from strongly infor-

mative content):

Theorem 2. Suppose that H and F have full support on [0, 1], H is symmetric, and q > q∗ as in

Theorem 1(b). Consider α = 1−2(1−p)(1−q)
2q and β = p

(
1− q∗

q

)
.14 The ratio µ is increasing in p if

λF (α) < 2λF (α−β), decreasing in p if λF (α) > 2λF (α−β), and unchanging if λF (α) = 2λF (α−β).
14Note that it can be shown 0 ≤ α− β ≤ α ≤ 1, so the hazard rates are well-defined everywhere.
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Informally, Theorem 2 states that Bayesians perform comparatively worse than DeGroots

when misinformation is more evenly distributed. The reason is that while Bayesians are adept at

making inferences about the possibility of strongly misleading misinformation, misinformation

that is relatively balanced on both sides permits more rationalization of narratives and more

disagreement. On the other hand, more balanced misinformation is always better for DeGroot

learning because it permits greater likelihood of overall balanced news and less propaganda for

the incorrect state. Appendix B.3 shows how to apply this result when r comes from skewed or

unskewed distributions.

5 Polarization

Polarization and political partisanship have been steadily increasing (see Abramowitz (2010) and

Pew Research Center (2014) for evidence from the United States). As noted in the introduction, a

substantial literature advocates that increased polarization makes people more likely to disagree

over objective facts because of politically-biased reasoning, whereas new findings (see Tappin

et al. (2020)) suggest that this disagreement can be explained as a byproduct of sophisticated

(Bayesian) reasoning and not partisan bias.

Our model lends support to the latter explanation by showing that disagreement can natu-

rally arise from Bayesian updating. More generally, Theorem 3 highlights the fact that attempts

to establish a connection between partisanship and disagreement should take into account the

sophistication level of the agents and the amount of misinformation in the system. As misinfor-

mation becomes more prevalent, increased polarization leads to failure of learning in Bayesian

societies, but leaves DeGroot societies relatively unaffected. Thus, measuring the effects of po-

larization on learning and consistent disagreement without incorporating these elements can

lead to seemingly contradictory evidence.

We operationalize polarization as follows: consider some symmetric (about 1/2) belief distri-

butionH (density h) with support [π, π̄] and a mean-preserving spread ofH to some H̃γ (density

hγ) defined as:

h̃γ(π + (π − 1/2)γ) =
1

1 + γ
h(π)

where γ ∈ [−1, γ̄] where γ̄ = min
{

1−π̄
π̄−1/2 ,

π
1/2−π

}
. One can think of γ as a measure of belief

polarization in society. For larger γ, π + (π − 1/2)γ is closer to 0 when π < 1/2 and closer to

1 when π > 1/2; thus, the probability of realizing “tail” beliefs grows when γ increases. (Note

that 1/(1 + γ) is simply a scaling factor to guarantee the
∫ 1

0 h̃γ(π) dπ = 1.) A simple example of
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Figure 3. Polarization of beliefs captured through parameter γ.

increasing polarization for a truncated normal distribution of beliefs is given in Figure 3.

Our next result establishes a threshold result for polarization and its consequences to both

Bayesian and DeGroot mislearning:

Theorem 3. Let H be symmetric about 1/2 and q > q∗. There exists a threshold γ∗ such that if

γ < γ∗, the DeGroot society mislearns more often than the Bayesian society, whereas if γ > γ∗, the

DeGroot society mislearns less often than the Bayesian society.

In Bayesian societies, an increase in belief polarization always hurts learning. Mean-preserving

spreads necessarily create more tension in the learning process because agents cannot agree on

what is likely to be the true narrative. The impact is more mild on DeGroot agents because

they communicate and update beliefs by taking averages of their neighbors. In this case, mean-

preserving spreads do not affect their general ability to aggregate organic information, even

when they start from very different initial beliefs.

Remark — Note that when H is asymmetric, polarization still always hurts Bayesian societies

(see the proof of Theorem 3 in Appendix A). However, it is possible that in this case polarization

improves the chances of learning in a DeGroot society (see Appendix B.2 for an example). This

occurs because when society is initially well-informed, additional polarization pulls initial opin-

ions towards the correct and incorrect states. However, the convexity of how agents update their

beliefs from news (see Equations (1) and (2)) leads to an overall movement towards the correct

state. This fails in Bayesian societies because of persistent disagreement about the truth, and

further accentuates the result of Theorem 3 that polarization is more damaging to a Bayesian

society than a DeGroot one.
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Targeting Policies. We now consider the problem of a planner who can target a subset of the

population with information arguing for one state over the other. One can think of this policy as

an educational outreach intervention. For example, governments have been ramping up their

efforts to convince citizens to vaccinate against COVID-19, and a part of these efforts is targeted

advertising. The question is which agents should the planner target? For example, should she

target the most polarized agents? We show that the answer, again, crucially depends on the level

of sophistication of the agents.

Formally, the planner informs a small but positive measure of agents that the correct state

is either L or R. We assume the agents interpret this information in the same way they do

news: combined with the message mj that agent j receives, she also gets the planner’s message

mp
j ∈ {L,R} and updates using both messages. The next result describes the planner’s targeting

policy:

Proposition 3. There exists 1/2 < π∗ < 1 such that the targeting policy for DeGroot agents is to

target those agents whose beliefs lie in an open interval containing π∗ (and bounded away from 1).

The policy for Bayesians agents is to target those agents whose beliefs are farthest from the truth,

i.e., the extremists.

Proposition 3 states that in a DeGroot world with θ = L, the planner wants to influence right-

leaning moderates, as these are the agents who change their belief most when seeing message

L. Extremists in this society mostly dismiss messages that don’t agree with their priors, and the

planner has little to gain by targeting them. However, with Bayesian agents, extremists are exactly

the agents that the planner needs to target. While the efficacy of her work is limited, these are

the agents who are most inclined to spin narratives that anchor them to the incorrect state.

Remark 1 — Proposition 3 recommends a policy when the planner knows the true state, but the

insights generalize when the planner herself is uncertain about what the state actually is. In a

DeGroot society, the planner tries to make relatively moderate agents (of both ideologies) more

moderate. In Bayesian societies, the planner tries to make the extremists (of both ideologies)

move toward the center. Both of these policies push toward decreasing the polarization of ideo-

logical beliefs (albeit in different ways).

Remark 2 — Under a different learning objective, such as minimizing the proportion of agents

who mislearn the state, the DeGroot policy in Proposition 3 remains unaffected, but the Bayesian

policy becomes more subtle. In many environments, the regulator should still target the most

polarized Bayesian agents in society, but in some other instances, targeting mostly moderate
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Bayesian dissenters can be more effective. The nuances of targeting interventions under this

alternative objective are explored in detail in Appendix B.5.1.

6 Final Remarks

As argued recently in Watts et al. (2021), accurate information is very much a prerequisite for

successful democratic discourse. The Internet and social media have made it easier to dissem-

inate misinformation (Allcott and Gentzkow, 2017), with far-reaching consequences.15 There

are ongoing efforts across multiple disciplines to try and uncover the mechanisms by which

misinformation spreads. In this paper, we contribute to these efforts by examining misinforma-

tion through the lens of social learning and focusing on agents’ sophistication types. While the

learning mechanisms of these types have been studied in a broad context, they have not been

analyzed and compared when there is rampant misinformation. We show a reversal of results

and intuitions that hold in many normative learning setups, but not in the presence of misin-

formation. We do this through a parsimonious framework whose results reconcile several em-

pirical studies and whose predictions show the need for researchers and policymakers to jointly

consider sophistication and social learning as integral components in studying the spread of

misinformation.

15Examples range from individual actions along the lines of Pizzagate (Fisher et al., 2016), to belief in the “Death
Panels” of the Affordable Care Act (Watts et al., 2021), to more collective action failures like the spread of measles in
Eastern Europe as a result of Russian disinformation (Broniatowski et al., 2018).
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Online Appendix

A Proofs

We first provide two auxillary lemmas that we use in the proofs of our main results.

A.1 Auxiliary Lemmas

Recall thatH is the distribution of prior beliefs in the population and p is the strength of organic
news (likelihood a message corresponds to the true state θ). For misinformation, q denotes the
amount of misinformation in the system, r denotes how much of this misinformation argues for
state R, and F is the distribution of r.

Lemma 1. LetH be symmetric. If θ = L, the DeGroot society mislearns if and only if r ≥ (1−2(1−
q)(1− p))/(2q); if θ = R, the DeGroot society mislearns if and only if r ≤ (1− 2(1− q)p)/(2q).

Proof of Lemma 1. We prove this for θ = L; the case of θ = R is similar. For a fixed realization
r ∼ F (·), every DeGroot agent i converges to belief π∞ about θ = R:

π∞ =

∫ 1

0

(
((1− p)(1− q) + qr)

pα

pα+ (1− p)(1− α)
+ (p(1− q) + q(1− r)) (1− p)α

(1− p)α+ p(1− α)

)
h(α) dα

Via the Leibniz integral rule, we see that:

dπ∞
dr

=

∫ 1

0

∂

∂r

(
(1− p+ qr)

pα

pα+ (1− p)(1− α)
+ (p+ q(1− r)) (1− p)α

(1− p)α+ p(1− α)

)
h(α) dα

= q

∫ 1

0

(
pα

pα+ (1− p)(1− α)
− (1− p)α

(1− p)α+ p(1− α)

)
h(α) d(α)

= q

∫ 1

0

(1− α)α(2p− 1)

(p− α(2p− 1))((1− p) + α(2p− 1))
h(α) dα

Note that all expressions are positive because p > 1/2. The only non-trivial one to verify is the
first expression in the denominator, which is linear in α and thus it is sufficient to verify it is non-
negative for all α ∈ {0, 1} to prove it is non-negative for all α ∈ [0, 1]. When α = 0 it is equivalent
to p and when α = 1 it is equivalent to 1− p.

Thus, dπ∞/dr > 0 for all r. Consider the expression for π∞(r) when r = r̃ ≡ (1− 2(1− q)(1−
p))/(2q):∫ 1

0

(
((1− p)(1− q) + qr̃)

pα

pα+ (1− p)(1− α)
+ (p(1− q) + q(1− r̃)) (1− p)α

(1− p)α+ p(1− α)

)
h(α) dα

=

∫ 1/2

0

pα

2(pα+ (1− p)(1− α))
h(α) dα+

∫ 1

1/2

(1− p)α
2((1− p)α+ p(1− α))

h(α) dα

For the second integral expression, we make the change of variables β ≡ 1− α, which yields:

=

∫ 1/2

0

pα

2(pα+ (1− p)(1− α))
h(α) dα+

∫ 1/2

0

(1− p)(1− β)

2((1− p)(1− β) + pβ)
h(1− β) dβ

A-1



By symmetry of H , we know that h(1 − β) = h(β), thus the above expression simplifies to∫ 1/2
0 h(α) dα = 1/2 because H is symmetric and

∫ 1
0 h(α) dα = 1. Similarly, because dπ∞/dr > 0,

we know whenever r > r̃, π∞(r) > 1/2 and so agents elect action ai = R, and the society mis-
learns. Whenever r < r̃, π∞(r) < 1/2 and so agents elect action ai = L, and the society does
learn.

Lemma 2. If H has full support and θ = L, the Bayesian society mislearns if and only if r ≥
r + (2p−1)(1−q)

q ; if θ = R, the Bayesian society mislearns if and only if r ≤ r̄ − (2p−1)(1−q)
q .

Proof of Lemma 2. Once again, we prove this θ = L and remark that the case of θ = R is similar.
Unlike Lemma 1, we prove both the “if” and “only if” parts separately:

(i) If part : Suppose r ≥ r+ (2p−1)(1−q)
q . There is some proportion ρL of messages that advocate

for L and some proportion ρR = 1− ρL of messages that advocate for R.

When θ = L, p(1 − q) proportion of the messages are both organic and advocate for L,
i.e., mi = L, when the population is large. Similarly, q(1 − r) proportion of messages are
inorganic (“misinformation”) and advocate for L as well. Call this scenario 1.

When θ = R, (1− p)(1− q) proportion of the messages are both organic and advocate for L,
with once again, q(1− r) proportion of messages that are inorganic and advocate for L too.
Call this scenario 2.

Both scenarios occur with positive probability if there exist some r1 and r2, both within
[r, r̄], where both scenarios yield the same realized distribution ρL and ρR. In scenario 1 we
admit ρ1

L = p(1 − q) + q(1 − r1) and in scenario 2 we admit ρ2
L = (1 − p)(1 − q) + q(1 − r2).

Because θ = L, we know that r1 = r and scenario 1 occurs with positive probability. To see if
scenario 2 occurs with positive probability, one needs to find the existence of r2 ∈ [0, 1] such
that p(1−q)+q(1−r) = (1−p)(1−q)+q(1−r2). When r2 = 1 and since p(1−q)+q(1−r) >
(1 − p)(1 − q), there exists a value for r2 where the left-hand side is greater than the right-
hand side. Moreover, the left-hand side is decreasing in r2, so verify there exists some r2

where equality can be obtained, it is sufficient to have p(1− q)+ q(1−r) ≤ (1−p)(1− q)+ q.
Rearranging gives the condition in the lemma.

Finally, we note that under this condition, both scenario 1 and scenario 2 occur with prob-
ability η1, η2 > 0. The probability that an agent with prior πi,0 about scenario 2 (i.e., θ = R)
is:

πi,2 =
η2πi,0

η2πi,0 + η1(1− πi,0)

Taking πi,0 sufficiently close to 1 yields πi,2 > 1/2, and given H has full support, implies
some positive fraction of the Bayesian population mislearns, so society fails to learn as
well.

(ii) Only if part : Suppose r < r + (2p−1)(1−q)
q . Then by the same argument in the “if” proof,

there exists no value for r2 such that p(1− q) + q(1− r) = (1− p)(1− q) + q(1− r2) because
p(1− q) + q(1− r) > (1− p)(1− q) + q(1− r2) for all r2 ∈ [r, r̄]. Thus, there exists a unique
value for r that yields message distribution ρL (scenario 1) and it necessarily corresponds
to θ = L. Note that:

πi,2 =
η2πi,0

η2πi,0 + η1(1− πi,0)
= 0

given that η1 > 0 and η2 = 0, and πi,0 ∈ (0, 1) almost surely. Thus, all of the Bayesian agents
learn the correct state θ = L.
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A.2 Proofs of Section 4

Proof of Proposition 1. We showed in Lemma 1 that dπ∞/dr > 0 without utilizing the symmetry
assumption on H . The DeGroot society mislearns if and only if that π∞(r) > 1/2 when θ = L.
Thus, there is a unique cutoff r∗D such that the DeGroot society mislearns if and only if r > r∗D.

Proof of Proposition 2. We showed in Lemma 2 there is a single narrative when r < r∗B ≡ r +
(2p−1)(1−q)

q , which implies the Bayesian society must learn in this setting, as πi,2 = 0 when θ = L.

Proof of Theorem 1. Note by Lemma 1, the DeGroot society mislearns with positive probability
when q > 2p−1

2p . By the arguments in Lemma 2, given that H may or may not have full support,
a necessary (but not necessarily sufficient) condition for the Bayesian society to mislearn is that
q > 2p−1

2p−r ≥
2p−1

2p . This establishes part (a) by taking q∗ = 2p−1
2p .

For part (b), when q > q∗ and H and F have full support (so r = 0), the Bayesian society

mislearns with probability 1 − F
(

(2p−1)(1−q)
q

)
and by Lemma 1 the DeGroot society mislearns

with probability 1− F
(

1−2(1−q)(1−p))
2q

)
. Observe that:

(2p− 1)(1− q)
q

− 1− 2(1− q)(1− p))
2q

=
2p(1− q)− 1

2q

which is a decreasing function in q and is exactly equal to 0 when q = q∗. Thus, by monotonicity

of F , F
(

(2p−1)(1−q)
q

)
< F

(
1−2(1−q)(1−p))

2q

)
and so 1 − F

(
(2p−1)(1−q)

q

)
> 1 − F

(
1−2(1−q)(1−p))

2q

)
,

implying the Bayesian society mislearns more often.

Proof of Theorem 2. When θ = L, note the ratio of DeGroot mislearning to the ratio of Bayesian
mislearning is given by:

µ =
1− F

(
1−2(1−q)(1−p)

2q

)
1− F

(
(2p−1)(1−q)

q

)
by Lemma 1 and Lemma 2. Differentiating with respect to p, we get that

∂µ

∂p
=
f
(

(2p−1)(1−q)
q

)
2(1−q)
q

(
1− F

(
1−2(1−q)(1−p)

2q

))
− f

(
1−2(1−q)(1−p)

2q

)
1−q
q

(
1− F

(
(2p−1)(1−q)

q

))
(

1− F
(

(2p−1)(1−q)
q

))2

Note that ∂µ/∂p > 0 if and only if

2f

(
(2p− 1)(1− q)

q

)(
1− F

(
1− 2(1− q)(1− p)

2q

))
> f

(
1− 2(1− q)(1− p)

2q

)(
1− F

(
(2p− 1)(1− q)

q

))
It is easy to see that q∗ = 2p−1

2p from the proof of Theorem 1, and thus α ≡ 1−2(1−p)(1−q)
2q and

α−β = (2p−1)(1−q)
q (given that β ≡ p

(
1− q∗

q

)
). Substituting we have that ∂µ/∂p > 0 if and only if

2f(α− β)(1− F (α)) > f(α)(1− F (α− β))
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or in other words, 2λF (α− β) > λF (α), which proves the claim.

A.3 Proofs of Section 5

Proof of Theorem 3. Observe that larger values of γ decrease the lower support of the distribution
H : if π̄ > 1/2 is the upper support for h, then π̄γ = π̄ + (π̄ − 1/2)γ is increasing in γ and when
γ = 0, π̄γ = π̄. Moreover, all values of γ preserve the symmetry of H .

By Lemma 1, and since H is always symmetric, the probability of DeGroot mislearning does
not depend of γ. For Bayesian learning, there is always either one (r < r∗B) or two narratives
(r > r∗B). In the former case, Bayesians always learn. In the latter case, let ηL be the likelihood of
the θ = L narrative and ηR be the likelihood of the θ = R narrative. Then the Bayesian society
mislearns if and only if:

ηRπ̄

ηRπ̄ + ηL(1− π̄)
> 1/2

But note that the left-hand side is increase π̄, so for every realization of r, mislearning can only
become “more likely” as π̄ increases.16 Integrating over all of r shows that the likelihood of
Bayesian mislearning is increasing in π̄ and, in particular, is increasing in γ.

Next observe that when γ = −1, the Bayesian society mislearns with lower probability than
the DeGroot society. To show this, note that when γ = −1, the density h is a Dirac-delta function
at belief π = 1/2. Thus, all Bayesian agents initially agree, so there is a homogenous prior. By
the improvement principle (see, for instance, Golub and Sadler (2017)), Bayesian agents must
be able to outperform the DeGroot heuristic.

Finally, when γ = γ̄, then H has full support on [0, 1], so by Theorem 1(b), we know the
Bayesian society mislearns with higher probability than the DeGroots. By the previous para-
graph, we know that when γ = −1, then the Bayesian society mislearns. Because the mislearning
probability is increasing in γ for Bayesians but constant for DeGroots, there must be a unique
single-crossing γ∗ that determines the phase transition.

Proof of Proposition 3. We prove the two parts of the result, which separate into DeGroot and
Bayesian societies. For both, we fix θ = L for concreteness.

(i) DeGroot society: Because we have fixed θ = L, we know that mp = L for targeted agents.
Thus, there are two cases for πi,1 for the DeGroot agent that depend on whether (i) agent i
receives mi = R and mp = L or (ii) agent i receives both mi = L and mp = L. The former
case occurs with probability (1 − p)(1 − q) + qr whereas the latter occurs with probability
p(1 − q) + q(1 − r). In the former, it is easy to verify her belief remains unaffected, i.e.,
πi,1 = πi,0. In the latter case, applying Bayes’ rule we see:

πi,1 =
(1− p)2πi,0

(1− p)2πi,0 + (1− (1− p)2)(1− πi,0)

Thus, the expected belief update of agent i is given by:

E[πi,1|πi,0] = ((1−p)(1−q)+qr)πi,0+(p(1−q)+q(1−r)) (1− p)2πi,0
(1− p)2πi,0 + (1− (1− p)2)(1− πi,0)

16“More likely” is a slight abuse of terminology, because for a given realization of r, the society either learns or does
not almost surely. Formally, we mean that an increase in π̄ can not transition society from mislearning to learning for
this value of r.
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Note that the change in belief from targeting, given by ∆ ≡ E[πi,1|πi,0]− πi,0 is:

∂∆

∂πi,0
= p

(
(2− p)(1− p)2(p(1− q) + q(1− r))

(πi,0(2p2 − 4p+ 1) + (2− p)p)2
− (1− q)

)
− q(1− r)

When p > 1/2, note that 2p2 − 4p+ 1 < 0, so ∂∆/∂πi,0 is strictly increasing in πi,0, and thus
∆ is strictly convex is πi,0. Moreover, ∆(πi,0 = 0) = 0 and ∆(πi,0 = 1) = 0, so ∆ is maximized
at some unique π∗i,0 ∈ (0, 1). Note that when πi,0 = 1/2, then

∂∆

∂πi,0
(πi,0 = 1/2) = −(1− 2(2− p)p)2(p(1− q) + q(1− r)) < 0

Because ∆′′ > 0 everywhere, this implies that ∆′(π∗i,0(r)) = 0 for some π∗i,0(r) > 1/2, which
might depend on r.

Consider the set of agents with belief α = πi,0, denoted by A, who are targeted. Recall that
all DeGroots converge to a consensus belief π∞:

π∞(r) =

∫
α∈A

E[πi,1 |α , mp = L]h(α) dα+

∫
α 6∈A

E[πi,1 |α , mp = ∅]h(α) dα

If A is restricted to have some small measure ν (in prior space h), and the objective is to
minimize π∞ it is clear that the optimal choice of A is top pick an open interval around
π∗i,0(r) given that ∆ is continuous in πi,0.

Finally, note that π∞(r), under the optimal choice of A for each r, is continuous due to
Berge’s theorem of the maximum. Finally, because of continuity and the fact π∞(r) > 1/2
for all r, we know there exists an interval (π∗0, π̄

∗
0) such that for all r, π∗0 lies in this inter-

val, with 1/2 < π∗0 < π̄∗0 < 1. The probability that DeGroot agents mislearn is given by
Er[1π∞(r)>1/2], and because 1π∞(r)>1/2 is monotone in π∞(r), this implies that the optimal
choice of π∗0 to maximize this expectation also satisfies π∗0 > 1/2.

(ii) Bayesian society: We claim that reducing the highest belief πi,0 is equivalent to decreasing
the likelihood of mislearning. Observe that πi,2 (which is equal to πi,T for large T ) is equiv-
alent to decreasing the likelihood of mislearning for Bayesian agents. To see this, note that
for Bayesian agent i, πi,2 is strictly increasing in πi,0, fixing the messages {mi}Ni=1, which
all Bayesians are able to deduce by period 2. Note that if there exists an open interval
(π1, π2) ⊂ [π, π̄] such that all agents with πi,0 ∈ (π1, π2) mislearn, the Bayesian society mis-
learns. By the assumption that [π, π̄] has full support, targeting some open interval nearest
π maximizes the probability of all agents learning when θ = L. Thus, the optimal policy
targets an agent who is most extreme near π.
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B Supplemental Material

B.1 Likelihood of Mislearning

We show that Bayesian agents perform worse than DeGroot agents on average. We adopt the
environment from Setting B in Section 3, but we do not focus on a specific realization of the
misinformation split. Instead, we look at the likelihood that society does not learn when we
draw the split r from its true (uniform, in this example) distribution. How do Bayesian agents
perform relative to DeGroot agents on average?

We track the beliefs of both societies:

Bayesian Population. At t = 1, each Bayesian agent i forms a posterior belief πi,1 based on mi

according to Section 2. Once again, we know that πj,1 > πj,0 if and only if mi = R and πj,1 < πj,0
if and only if mi = L. So every agent i can deduce all of the messages {mj}Nj=1 by period 2.

Among the collection of messages {mj}Nj=1, if the state is θ = L, there are (roughly) p(1− q) +
q(1 − r) proportion of L messages and (1 − p)(1 − q) + qr proportion of R messages, whereas if
the state is θ = R, there are (1− p)(1− q) + q(1− r) proportion of L messages and p(1− q) + qr
proportion of R messages. The state cannot be pinned down if there exists a value r′ ∈ [0, 1]
such that p(1 − q) + q(1 − r) = (1 − p)(1 − q) + q(1 − r′); in this case, there exist exactly two
realizations of r (the true r and another r′) for which the given distribution of messages can be
explained under two different states, θ = L (correct) and θ = R (incorrect). Moreover, because
r is uniformly distributed on [0, 1], both of these scenarios are equally likely. This implies that
πj,2 = πj,0 because the messages provide no information about the state θ; consequently, the
society of Bayesian agents does not learn.

Note that (1− p)(1− q) + q(1− r′) is maximized when r′ = 0; thus it is sufficient to consider
for what values of r the inequality p(1− q) + q(1− r) ≤ (1− p)(1− q) + q holds; this corresponds
to the values of r for which there is mislearning. Rearranging, we see that r ≥ 1− 1−2p(1−q)

q = 0.6
when p = 0.6 and q = 0.25. Hence, the Bayesian society mislearns with probability 40% (given
that r is uniformly distributed on [0, 1]) in the setting with 25% misinformation.

DeGroot Population. DeGroot agents update in the same way as before (i.e., via Equations (1)
and (2)) using p = 0.6. Thus, noting that p(1− q) + q(1− r) of the messages are L and (1− p)(1−
q) + qr of the messages are R, DeGroot agents hold beliefs πj,t for all t ≥ 2:

π∞(r) ≡
∫ 1

0

(
(.4(.75) + .25r) · .6α

.6α+ .4(1− α)
+ (.6(.75) + .25(1− r)) · .4α

.4α+ .6(1− α)

)
dα

Note that π∞(r) is monotonically increasing in r and it can be shown that π∞(r) ≤ 1/2 if and
only if there are less than 50% R messages; thus, π∞(r) ≤ 1/2 if and only if (1 − p)(1 − q) +

qr ≤ 1/2, or in other words, r ≤ 1/2−(1−p)(1−q)
q = 0.8. Thus, since DeGroot agents mislearn

the true state only when r ≥ r∗, we see they mislearn 20% of the time, which outperforms the
Bayesian population by a factor of two. Recall that quantifying how much better DeGroots do
than Bayesians in general is formally analyzed in Theorem 2 in the paper.

B.2 Polarization

The next example shows that in some cases, mean-preserving spreads (i.e., more polarization)
can improve the learning outcomes of DeGroot agents.
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Example 1. Consider a world where θ = L and as in Section 3, the misinformation is q = 0.25,
so DeGroot societies (as well as Bayesian societies) mislearn with positive probability.

First, suppose H is distributed with a small right bias, as demonstrated in Figure 4a and Fig-
ure 4b. In the more polarized society of Figure 4a, many prior opinions start off initially quite
misinformed, so not much misinformation on the right-side can support learning (i.e., the re-
alization of r must be lower); in particular, r ≤ .281 ≡ r∗ is required to support learning. Next,
consider a decrease in polarization to the Dirac-delta function on the average opinion of H , as
shown in Figure 4b. This increases the threshold of right-leaning misinformation that can be
tolerated for learning to r∗ = .319, and the corresponding probability that learning occurs also
increases. Because moderate right-leaning agents are the most likely to be influenced by or-
ganic left-leaning news, less polarization helps the DeGroot society learn, as is the case with the
Bayesians.

(a) Right-leaning but polarized society. (b) Right-leaning but non-polarized society.

Figure 4. Two right-leaning distributions of prior beliefs (with the same mean belief), one of
which is polarized and the other is not. The less polarized community mislearns less often be-
cause less evidence is needed to convince moderate right-leaning agents of θ = L.

Conversely, suppose H is distributed with a small left bias, as demonstrated in Figure 5a and
Figure 5b, so beliefs tend to support the correct state of the world. When (almost all) beliefs are
concentrated just left of center (Figure 5b), there is positive probability of mislearning because
there is some chance that right-leaning misinformation dominates and causes all agents to move
closer to right-leaning ideas. However, these effects are mitigated when polarization increases,
and learning occurs with probability 1 when it is sufficiently high, as shown in Figure 5a. This is
because strong left-leaning believers are not swayed as much by right-leaning misinformation,
but moderate right-leaning agents can be considerably convinced of left-leaning organic news.
Thus, polarization generally helps when then initial belief distribution is already slanted toward
the correct state. This is somewhat surprising given that additional polarization pushes more
agents toward the incorrect belief of the world. Observe that this stands in contrast to polariza-
tion in Bayesian societies: whereas DeGroots always reach a consensus, and thus polarization
can sometimes nudge the entire society closer to truth (in the aggregate), the ability of Bayesians
to spin multiple narrative impedes consensus in the face of increasing polarization.
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(a) Left-leaning but polarized society. (b) Left-leaning but non-polarized society.

Figure 5. Two left-leaning distributions of prior beliefs (with the same mean belief), one of which
is polarized and the other is not. The less polarized community mislearns more often because
they are more susceptible to believing right-leaning ideas when right-leaning misinformation is
more pervasive.

B.3 Mislearning Rates with High Misinformation

Let q > q∗. We denote by µ the ratio of the probability of DeGroot mislearning to the probability
of Bayesian mislearning. Recall µ < 1 by Theorem 1 (i.e., the “relative” frequency of DeGroot
to Bayesian mislearning). Low values of µ indicate DeGroots do much better than Bayesians,
whereas relatively larger values indicate Bayesians close the gap in mislearning more. Next, we
try to reason about the conditions under which µ is increasing (i.e., Bayesian agents start pick-
ing up an advantage relative to DeGroot agents) or µ is decreasing (i.e., DeGroots learn more
frequently relative to Bayesians) as a function of the strength of organic signals p and the misin-
formation in the system q. For, this we make the following standard definition of the hazard rate
of a distribution:

Definition 1. The hazard rate λG(α) of a distribution G is given by λG(α) = g(α)
1−G(α) where g(·) is

the density of cumulative distribution function G.

The hazard rate at point α∗ corresponds the likelihood of the realization α ∈ (α∗, α∗ + dα)
relative to the interval size dα, conditional on α ≥ α∗. Theorem 2 relates the hazard rate at
specific points on the F distribution (local properties of F ) to the sensitivity of µ to p (global
property17 of F ). To gather some intuition for Theorem 2, let us look at three applications:

(i) Uniform distribution: Recall the uniform distribution we assumed forF in Section 3 showed
that when q = 0.25, DeGroot agents mislearn half as often as the Bayesians did. How does
this depend on p? The hazard rate is λF (r) = 1

1−r , which is increasing in r because the likeli-
hood of falling within an interval of fixed length dr is increasing as one conditions on higher
values of r. Thus, while λF (α− β) < λF (α), it is unclear its relation to λF (α)/2. Some basic
algebra reveals that λF (α − β) = λF (α)/2 for all values of α, β, so µ has no dependence on

17It might appear as though the hazard rate condition in Theorem 2 is still a local property, because we are looking
at local changes in p, but recall that to characterize mislearning probability, one must consider all realizations r that
come from F .
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p. Thus, DeGroot societies always mislearn half as often as Bayesian ones on the uniform
distribution.

(ii) Unskewed misinformation (Figure 2 in the paper): This distribution of F is one where mis-
information is likely to evenly balanced betweenL andR. Instead of computing the hazard
rate for α and α−β explicitly, we will draw inferences by comparing it to the uniform distri-
bution. When r < 1/2, the hazard rate is given by λF (r) = 4r

1−2r2
whereas when r > 1/2, the

hazard rate is given by λF (r) = 4−4r
2−4r+2r2

. It is easy to show the ratio of the hazard rate of this
distribution to the uniform distribution is increasing on r < 1/2 and constant on r > 1/2.
Thus, 2λF (α − β) ≤ λF (α) and the ratio µ is decreasing in p, meaning that DeGroots do
comparatively better with more precise organic information in an inverted V-distribution
(i.e., the Bayesians are more than twice as likely to mislearn than the Bayesians). The in-
tuition is simple: more moderate misinformation increases the likelihood that Bayesian
agents can spin a narrative to their liking, whereas for DeGroots it corresponds to a greater
likelihood of having balanced misinformation (that washes out), allowing the organic news
to win out.

(iii) Skewed misinformation (inverse of Figure 2 in the paper): Relative to application (ii), the
opposite effect occurs here. When r < 1/2, the hazard rate is decreasing relative to the uni-
form distribution; when r > 1/2, the hazard rate is again constant. This means the opposite
inequality holds (i.e., λF (α) ≤ 2λF (α − β)) and by Theorem 2, the ratio µ is increasing in
p. When the misinformation is more extreme, Bayesians are comparatively more resilient,
and mislearn less than twice as often as their DeGroot counterparts. The high likelihood
of very misleading misinformation is not as well-handled by the DeGroot agents relative
to a Bayesian society. While the Bayesian society can use more extreme misinformation to
dismiss an incorrect narrative, the DeGroot society falls victim to such misinformation.

B.4 Network Learning Dynamics and Multiple Messages

In Section 2, we considered a model of learning where all agents observe the beliefs of all other
agents. However, this is often an unrealistic assumption, and there is a wide array of literature
that considers the subtleties of learning when these observations are incomplete (see Golub
and Sadler (2017) for a survey). The common approach to modeling this incompleteness is to
assume there is a social network with pairwise connections that determines who can observe (or
talk to) whom. In this context, the model in Section 2 assumes a complete social network, which
simplifies the relevant dynamics to two periods.

In this section, we relax this assumption by considering arbitrary network architectures and
the richer learning dynamics that occur over a longer time horizon. Under relatively mild con-
ditions on the network structure, we show network learning leads to the same outcomes and
insights found in the more parsimonious complete network setting, thereby rendering our as-
sumption to be largely without loss of generality. We do this by building off of the previous
literature on network learning in both Bayesian and DeGroot populations.

Network Preliminaries. We assume that all agents are arranged in an undirected social network
G. A link i↔ j denotes that agent i and agent j observe (or talk to) each other. We letNi denote
the neighborhood of agent i (i.e., the set of agents j with i↔ j). The adjacency matrix A of G is
a binary matrix with [A]ii = 1 and [A]ij = 1 if and only if i↔ j. Let dGi be the degree of agent i in
G. We say a network G is k-regular if all agents have degree k.
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We consider a discrete time model (as before) but with a much longer learning horizon T ,
t = 0, 1, 2, . . . , T . We let π̃i,t denote the belief of agent i at time t under network learning, whereas
πi,0, πi,1, and πi,2 denote the beliefs of agent i at time 0, 1, and 2, respectively, in the baseline
model (i.e., a complete network).

Bayesian Population. Network learning in settings with fully rational (i.e., Bayesian) agents has
been studied in many contexts, most notably in Acemoglu et al. (2011) and Gale and Kariv (2003).
As is common in many models of Bayesian network learning,18 we assume that the network
G and initial priors πi,0 are common knowledge.19 Bayesian agents observe the beliefs of all
agents in their neighborhoods for all t ≥ 1 (i.e., agent i observes at time t the beliefs from t − 1,
{πj,t−1}j∈Ni). Our next result shows that terminal beliefs in network learning indeed converge to
the terminal beliefs of the baseline model:

Claim 1. Suppose G is connected. Then as T →∞, π̃i,T → πi,2.

This claim follows directly from Mueller-Frank (2013). While agents do not hold a common
prior about θ, common knowledge of the heterogenous priors {πj,0}Nj=1 allows agents to recali-
brate the (updated) beliefs they see to their own prior. It is clear that the private information at
t = 1 (i.e., the messages) are drawn from a finite partition of the θ state space (conditional on
misinformation split r). Thus, by Theorem 4 of Mueller-Frank (2013), all Bayesian agents un-
cover the private information (i.e., t = 1 messages) of all other agents (including non-neighbors)
in the network as T →∞, as is the case at t = 2 in the baseline model.

DeGroot Population. Due to demanding assumptions about the reasoning abilities of Bayesian
agents, “rule-of-thumb” learning has become a popular alternative model. The most common
model is that of Degroot (1974), and later expanded upon in works such as Golub and Jackson
(2010) and DeMarzo et al. (2003). In these models, agents are assumed to update their beliefs
using the simple heuristic of taking linear combinations of their neighbors’ beliefs. Formally,
agent i forms belief πi,t+1 at each time t by computing:

πi,t+1 =
1

1 + dGi

πi,t +
∑
j∈Ni

πj,t


Our next result provides conditions under which DeGroot learning over the network G leads to
the same terminal beliefs as in our baseline model:

Claim 2. Suppose G is a connected, k-regular network. Then as T →∞, π̃i,T → πi,2.

This claim follows directly from Golub and Jackson (2010). First, by Proposition 1 in Golub
and Jackson (2010), observe that consensus is reached (as in the baseline model) because the
normalized adjacency matrix A is irreducible and aperiodic, the former following from the con-
nectedness assumption and the latter following from a positive diagonal on A. Second, by The-
orem 3 in Golub and Jackson (2010), the consensus belief of the agents as T → ∞ is given by
π̃i,∞ =

∑N
j=1 v

G
j πj,1 for all agents i, where vGj is the (eigenvector) centrality of agent j (according

to the row-stochastic normalized adjacency matrix A). Because vGj = dGj /
∑N

`=1 d
G
` , we obtain

by k-regularity that π̃i,∞ = 1
N

∑N
j=1 πj,1 = πi,2.

18In addition to Acemoglu et al. (2011) and Gale and Kariv (2003), see Mueller-Frank (2014) and Mossel et al. (2014).
19An alternative assumption, which does not require strong common knowledge assumptions of non-neighbor

priors or the network structure, is that the size of the smallest neighborhood grows unboundedly as N →∞.
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Observe that Claim 2 requires an additional condition not present in Claim 1, which is that
no agent is more “influential” than any other agent in the network G, as measured by her degree.
This is easily satisfied by many network topologies, including several classes of random networks
such as Erdos-Renyi networks (where links between agents occur uniformly at random).20

Multiple Messages. Let us consider the complete network setting of Section 2 for simplicity, but
note that the reduction from arbitrary network learning discussed previously still applies.

In a Bayesian society withN →∞, by the strong law of large numbers, the first round of mes-
sages reveals the true fraction ofR messages, ρR, and the true fraction of Lmessages, ρL, almost
surely. Obtaining additional messages in subsequent rounds does not alter the (almost surely)
known values of ρR or ρL, thus, learning is entirely unaffected by more incoming messages.

In a DeGroot society, after the first round of messages, agents converge to a consensus about
θ which is a function of ρR (and ρL) alone. When H is symmetric, whether ρR > 1/2 or ρL > 1/2
determines if the consensus, call it π2, lies more toward state R (i.e., π2 > 1/2) or state L (i.e.,
π2 < 1/2). By the martingale property of Bayesian updating, it is easy to see that E[BU(π2) | ρR >
1/2 ; π2 > 1/2] > 1/2 and E[BU(π2) | ρR < 1/2 ; π2 < 1/2] < 1/2 (where BU is the Bayesian up-
date for DeGroot agents conditioning on the message, given by Equation (1) and Equation (2)).
Therefore, one can show by induction that beliefs remain on the same side of belief 1/2 as they
are at t = 2 for all t ≥ T , even with additional messages. Consequently, the likelihood of
(mis)learning is unaffected by any further stream of messages.

B.5 Robustness: Learning Metric and Finite Populations

We conduct two robustness checks on our main learning results. First, we consider how our
results change when looking at the expected fraction of mislearning agents, instead of the binary
metric of whether the entire society learns or not. Second, we test the sensitivity of our large
population assumption (i.e., N →∞) by simulating learning in settings with finite N .

B.5.1 Learning Metric

We consider the alternative learning metric of the expected proportion of the population that
mislearns the true state. In particular, we look at (i) the environments where DeGroots or Bayesians
perform better under this metric, and (ii) how the targeting policy changes under this other
learning objective.

DeGroot vs Bayesian. How is learning affected when one evaluates the expected fraction of
mislearning agents? Provided that H is sufficiently polarized (i.e., there are few moderate left or
right-leaning agents and most agents have relatively strong opinions), the expected fraction of
mislearning Bayesian agents is approximately half of the Bayesian mislearning rate; conversely,
the expected fraction of mislearning DeGroot agents is exactly the mislearning rate. The former
can be seen from Proposition 2: all agents in society learn when there is a single narrative, but
when there are multiple narratives (and H is symmetric), only those who have priors that agree
with the truth (i.e., 50%) will take the correct action. The latter can be seen from the fact that the
DeGroot society always comes to consensus, so the two notions of learning coincide.

20k-regularity will hold approximately for largeN in dense ER networks; see for instance, Avella-Medina et al. (2020)
and Dasaratha (2020).
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The comparison between Bayesian and DeGroot societies using this learning metric is best
highlighted using the hazard rate analysis of Section 4.4 and Appendix B.3 in the high-misinformation
regime (i.e., q > q∗), which depends on the distribution of misinformation F :

(i) Uniform distribution: When F has a uniform distribution, the Bayesian society mislearns
twice as often as the DeGroot society. Thus, under the new learning metric, the expected
fraction of mislearning agents is the same for both Bayesians and DeGroots.

(ii) Unskewed distribution: WhenF has an unskewed distribution (i.e., misinformation is more
likely to be evenly split between ideologies), DeGroots perform better than Bayesians rel-
ative to the base case of the uniform distribution. Thus, under the new learning metric,
DeGroots outperform Bayesian agents in the expected fraction of mislearning agents.

(iii) Skewed distribution: When F has a more skewed distribution (i.e., misinformation is more
likely to come mostly from one ideology), Bayesians perform better than DeGroots rel-
ative to the base case of the uniform distribution. Thus, under the new learning met-
ric, Bayesians would outperform DeGroot agents in the expected fraction of mislearning
agents.

These cases make it clear that the main message of our paper —that reasoning abilities have
an ambiguous effect on learning outcomes and that DeGroot agents can outperform Bayesian
agents— is not an artifact of the learning definition but rather a fundamental property of learn-
ing in the presence of misinformation. Under this metric, the outcomes depend on both the
level of misinformation (i.e., whether q > q∗ or q < q∗) and the concavity/convexity of f . An
interesting implication of the above metric is that it suggests that DeGroot agents are better at
learning the state when misinformation is likely to come from both sides of the spectrum, which
is likely the case with most controversial political issues. On the other hand, Bayesian agents can
be better at learning the state when misinformation is mostly one-sided, e.g., that it argues for
the earth being flat.

Targeting Policies. We consider a targeting policy where the regulator wants to minimize the
expected proportion of agents who mislearn. As before, we assume q > q∗ and the true state is
θ = L, which is known to the regulator. Because DeGroot agents always converge to a consensus,
the regulator does not change her targeting policy because either all agents learn or none do; we
let π∗D denote the belief of the optimal DeGroot target which is the same as π∗ in Proposition 3.
However, the policy will change for the Bayesian society in a subtle way. For the most likely split
of misinformation that generates two narratives, the regulator targets the agent whose posterior
belief is barely to the right of belief 1/2. We illustrate how this targeting policy works in practice
for the three settings considered before:

(i) Uniform distribution: For the uniform distribution, when there are two narratives, no agents
change their prior beliefs (and when there is only one, all agents learn anyway). Therefore,
the optimal targeting policy is to target the most moderate right-leaning agent. This stands
in contraposition to Proposition 3, as the regulator is better off targeting more moderate
Bayesian agents and relatively more extreme DeGroots (i.e., p∗B < p∗D).

(ii) Unskewed distribution: When F follows the inverse-V distribution, there are two cases to
consider. The first case is that the misinformation split r = 1/2 admits two narratives;
this occurs when q > 2(2p−1)

4p−1 > q∗. In this case, there is some r∗ < 1/2 that explains the
θ = R narrative; however, this narrative is less compelling than the θ = Lnarrative (because
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f is largest at r = 1/2). Thus, some moderate right-leaning agent with belief π∗B > 1/2
will be the optimal target. As q increases, the r∗ corresponding to the R narrative moves
closer to 1/2 and thus becomes more likely. Thus, for low q, π∗B will be close to 1 (target
the extremists, as in Proposition 3) whereas for high q, π∗B will target the most right-leaning
moderates (as in the uniform distribution).

The second case is that the misinformation split r = 1/2 admits only one narrative (q∗ <
q < 2(2p−1)

4p−1 ). Then there are (barely) two narratives when r = r∗ satisfies (1 − p)(1 − q) +

qr∗ = p(1 − q), or r∗ = (2p−1)(1−q)
q > 1/2, and this is the most likely split of misinformation

conditional on the existence of two narratives. The other narrative (the θ = R narrative)
has likelihood almost zero (this narrative occurs at r = 0), so only the most polarized right-
leaning agents will prescribe to this narrative over the true narrative for θ = L. Thus, the
optimal policy is exactly the same as in Proposition 3: the regulator should target the most
extreme Bayesian agents, which are strictly more extreme than the optimal DeGroot target.

(iii) Skewed distribution: When F follows the V-distribution, the most likely split of misinfor-
mation that admits two narratives is r = 1 (note that r = 0 is also the most likely, but when
θ = L, the L narrative is unique). There are always two narratives in this case and the θ = R

narrative corresponds to r∗ = 1−2p(1−q)
q . When q > 2(2p−1)

4p−1 > q∗, r∗ > 1/2, so increasing q
increases r∗ and makes the θ = R narrative more likely. Consequently, π∗B decreases and

the regulator targets more moderate right-leaning agents. When q∗ < q < 2(2p−1)
4p−1 , r∗ < 1/2,

so increasing q increases r∗ but makes the θ = R narrative less likely. Consequently, π∗B
increases and the regulator targets more extreme right-leaning agents. In particular, we re-
cover the policy of Proposition 3 (target the extremists) when q has the intermediate value
of 2(2p−1)

4p−1 .

Discussion — These cases highlight an interesting feature of the Bayesian targeting policy under
this alternative learning metric: the optimal target depends on the quantity of misinformation q
and can even be non-monotone in q.

In case (ii) (as with any concave distribution for F ), with relatively low misinformation, the
policy is the same as in Proposition 3: the regulator should target extremists because these are
the most stubborn agents to convince. However, with relatively high misinformation, the policy
changes to focus on more moderate right-leaning agents, because abundant misinformation
will necessarily confound learning for the extremists.

In case (iii) (as with any convex distribution for F ), the regulator employs a non-monotone
targeting policy. When misinformation is small or large, both narratives conclude that misinfor-
mation is heavily skewed toward one ideology, which inhibits learning and admits an optimal
policy of targeting moderate right-leaning agents. However, when misinformation is moderate,
the incorrect narrative involves an even split of misinformation, which is unlikely; consequently,
the regulator should target the most difficult agents to convince, the extremists, as in Proposi-
tion 3.

B.5.2 Finite Populations

Recall that Theorem 1 shows that when N → ∞ and in settings where misinformation is high
(q > q∗), DeGroot societies outperform Bayesian societies, whereas the converse holds when
misinformation is low (q < q∗). We consider how robust these findings are to a finite population
of agents.
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(a) High misinformation regime (b) Low misinformation regime

Figure 6. Beliefs in finite populations

High Misinformation. When there is high misinformation, DeGroot agents consistently outper-
form Bayesian agents for all finite populations, as shown in Figure 6a. Notably, Bayesian agents
converge to their theoretical long-run mislearning average more quickly than DeGroot agents.21

With few agents in the population, the small amount of information on the state θ allows for
more wild narrative telling. We denote this kind of narrative telling as a noise-based narrative
to distinguish it from the more subtle narrative telling identified in Section 4.2. Noise-based
narratives arise from the agents believing that the existing (and limited) content is just by hap-
penstance in opposition to one’s priors, but is not indicative of θ. Once the population reaches
a critical mass, the noise-based narrative dwindles and only the misinformation narrative spin
identified in Section 4.2 persists, keeping Bayesian mislearning at or above 40%.

Low Misinformation. When there is low misinformation, DeGroot agents can still outperform
Bayesian agents in small populations, as shown in Figure 6b. This is again related to the noise-
based narrative that Bayesian agents can spin in finite populations. As seen in Figure 6b, with
an infinite population, the Bayesian society learns almost surely, and so there are no misinfor-
mation narratives (of the form in Section 4.2) that can be told. As the population increases, the
noise-based narratives attenuate and once the population is large enough (e.g., N > 150), the
Bayesians begin to outperform the DeGroots, as predicted in Theorem 1 for the low misinforma-
tion regime.

21While both Figure 6a and Figure 6b show DeGroots bounded away from their long-run average, one can verify via
simulation that after N > 10000, DeGroots are within 1% of their N → ∞ learning rate (i.e., convergence is slower).
The plots are capped at N ≤ 150 because of the numerical issues associated with Bayesian learning when N is large
but finite.
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